Skip to main content
Log in

Coherence versus quantum-memory-assisted entropic uncertainty relation of double quantum dots with Rashba spin–orbit interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Gaining insight into nanostructure devices represents a crucial step in unlocking their full quantum potential. Solid-state quantum dots provide a practical and scalable foundation for accommodating qubits, which are essential for quantum information processing. In this context, we introduce a model involving a pair of qubits within a double quantum dot configuration. We extensively investigate its quantum coherence and the quantum-memory-assisted entropic uncertainty relation (\(\mathcal {QMA-EUR}\)), considering the influence of the thermal environment and Rashba spin–orbit coupling. Our findings reveal a monotonic increase in \(\mathcal {QMA-EUR}\) with rising temperatures (T), while the Jensen–Shannon coherence consistently decreases as T increases. Furthermore, fine-tuning the Rashba coupling can enhance the system’s coherence and reduce measurement uncertainty. We show that obtaining higher measurement precisions is achievable when the two-qubit system, made up of the double quantum dots with Rashba interaction, demonstrates higher levels of coherence. Additionally, we demonstrate that adjusting other Hamiltonian parameters offers advantages in preserving quantum resources. These reported results indicate promising prospects for developing quantum technologies that leverage such a quantum dot system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This research is a theoretical work and has no associated data.

References

  1. Dowling, J.P., Milburn, G.J.: Quantum technology: the second quantum revolution. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361, 1655–1674 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  3. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  4. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  ADS  Google Scholar 

  5. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165–171 (2007)

    Article  ADS  Google Scholar 

  6. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Physics 74(1), 145 (2002)

    Article  ADS  Google Scholar 

  7. Mansour, M., Dahbi, Z.: Quantum secret sharing protocol using maximally entangled multi-qudit states. Int. J. Theor. Phys. 59, 3876–3887 (2020)

    Article  MathSciNet  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  9. Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5(1), 4015 (2014)

    Article  ADS  Google Scholar 

  10. Paladino, E., Galperin, Y.M., Falci, G., Altshuler, B.L.: 1/f noise: implications for solid-state quantum information. Rev. Mod. Phys. 86(2), 361 (2014)

    Article  ADS  Google Scholar 

  11. Reed, M.A.: Quantum dots. Sci. Am. 268(1), 118–123 (1993)

    Article  ADS  Google Scholar 

  12. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1997)

    Article  ADS  Google Scholar 

  13. Dahbi, Z., Anka, M.F., Mansour, M., Rojas, M., Cruz, C.: Effect of induced transition on the quantum entanglement and coherence in two-coupled double quantum dot system. Ann. Phys. 535(3), 2200537 (2023)

    Article  Google Scholar 

  14. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744), 2180–2184 (2005)

    Article  ADS  Google Scholar 

  15. Chaouki, E., Dahbi, Z., Mansour, M.: Dynamics of quantum correlations in a quantum dot system with intrinsic decoherence effects. Int. J. Mod. Phys. B 36(22), 2250141 (2022)

    Article  ADS  Google Scholar 

  16. Elghaayda, S., Dahbi, Z., Mansour, M.: Local quantum uncertainty and local quantum Fisher information in two-coupled double quantum dots. Opt. Quantum Electron. 54(7), 419 (2022)

    Article  Google Scholar 

  17. Bodoky, F., Belzig, W., Bruder, C.: Connection between noise and quantum correlations in a double quantum dot. Phys. Rev. B 77(3), 035302 (2008)

    Article  ADS  Google Scholar 

  18. Bouafia, Z., Elghaayda, S., Mansour, M.: Effects of intrinsic decoherence on quantum coherence and correlations between spins within a two-dimensional honeycomb lattice graphene layer system. Mod. Phys. Lett. B 38(01), 2350203 (2024)

    Article  ADS  Google Scholar 

  19. Oumennana, M., Rahman, A.U., Mansour, M.: Quantum coherence versus non-classical correlations in XXZ spin-chain under Dzyaloshinsky–Moriya (DM) and KSEA interactions. Appl. Phys. B 128(9), 162 (2022)

    Article  ADS  Google Scholar 

  20. Dahbi, Z., Oumennana, M., Mansour, M.: Intrinsic decoherence effects on correlated coherence and quantum discord in XXZ Heisenberg model. Opt. Quantum Electron. 55(5), 412 (2023)

    Article  Google Scholar 

  21. Galitski, V., Spielman, I.B.: Spin–orbit coupling in quantum gases. Nature 494(7435), 49–54 (2013)

    Article  ADS  Google Scholar 

  22. Xu, W., Guo, Y.: Rashba and Dresselhaus spin–orbit coupling effects on tunnelling through two-dimensional magnetic quantum systems. Phys. Lett. A 340(1–4), 281–289 (2005)

    Article  ADS  Google Scholar 

  23. Donfack, B., Fotio, F., Fotue, A.J., Fai, L.C.: Cumulative effects of temperature, magnetic field and Spin orbit Interaction (SOI) on the properties of magnetopolaron in RbCl quantum well. Chin. J. Phys. 66, 573–579 (2020)

    Article  MathSciNet  Google Scholar 

  24. Donfack, B., Fotio, F., Fotue, A.J.: Cumulative effects of magnetic field and spin–orbit interaction (SOI) on excited binding energy of magnetopolaron in RbCl semi-exponential quantum well. Eur. Phys. J. Plus 136(2), 241 (2021)

    Article  Google Scholar 

  25. Donfack, B., Fotue, A.J.: Effects of spin orbit interaction (SOI) on the thermodynamic properties of a quantum pseudodot. J. Low Temp. Phys. 204, 206–222 (2021)

    Article  ADS  Google Scholar 

  26. Donfack, B., Mbognou, F.F., Tedondje, G.T., Cedric, T.M., Fotue, A.J.: Cumulative effects of laser and spin–orbit interaction (SOI) on the thermal properties of quantum pseudo-dot. J. Low Temp. Phys., 1–17 (2021)

  27. Dresselhaus, G.: Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100(2), 580 (1955)

    Article  ADS  Google Scholar 

  28. Bychkov, Y.A., Rashba, E.I.: Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39(2), 78 (1984)

    ADS  Google Scholar 

  29. Bychkov, Y.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C Solid State Phys. 17(33), 6039 (1984)

    Article  ADS  Google Scholar 

  30. Loder, F., Kampf, A.P., Kopp, T.: Superconductivity with Rashba spin–orbit coupling and magnetic field. J. Phys. Condens. Matter 25(36), 362201 (2013)

    Article  Google Scholar 

  31. Sato, M., Fujimoto, S.: Topological phases of noncentrosymmetric superconductors: edge states, Majorana fermions, and non-Abelian statistics. Phys. Rev. B 79(9), 094504 (2009)

    Article  ADS  Google Scholar 

  32. Ferreira, M., Rojas, O., Rojas, M.: Thermal entanglement and quantum coherence of a single electron in a double quantum dot with Rashba interaction. Phys. Rev. A 107(5), 052408 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  33. Chakraborty, T., Pietiläinen, P.: Electron correlations in a quantum dot with Bychkov–Rashba coupling. Phys. Rev. B 71(11), 113305 (2005)

    Article  ADS  Google Scholar 

  34. Tsitsishvili, E., Lozano, G.S., Gogolin, A.O.: Rashba coupling in quantum dots: an exact solution. Phys. Rev. B 70(11), 115316 (2004)

    Article  ADS  Google Scholar 

  35. Dahbi, Z., Oumennana, M., Anouz, K.E., Mansour, M., Allati, A.E.: Quantum Fisher information versus quantum skew information in double quantum dots with Rashba interaction. Appl. Phys. B 129(2), 27 (2023)

    Article  ADS  Google Scholar 

  36. Li, Y.C., Chen, X., Muga, J.G., Sherman, E.Y.: Qubit gates with simultaneous transport in double quantum dots. New J. Phys. 20(11), 113029 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  37. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43(3–4), 172–198 (1927)

    Article  ADS  Google Scholar 

  38. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34(1), 163 (1929)

    Article  ADS  Google Scholar 

  39. Białynicki-Birula, I., Mycielski, J.: Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 44, 129–132 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  40. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50(9), 631 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  41. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35(10), 3070 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  42. Maassen, H., Uffink, J.B.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  43. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6(9), 659–662 (2010)

    Article  Google Scholar 

  44. Pati, A.K., Wilde, M.M., Devi, A.U., Rajagopal, A.K.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86(4), 042105 (2012)

    Article  ADS  Google Scholar 

  45. Oumennana, M., Mansour, M.: Quantum coherence versus quantum-memory-assisted entropic uncertainty relation in a mixed spin-(1/2, 1) Heisenberg dimer. Opt. Quantum Electron. 55(7), 594 (2023)

    Article  Google Scholar 

  46. Khedif, Y., Haddadi, S., Pourkarimi, M.R., Daoud, M.: Thermal correlations and entropic uncertainty in a two-spin system under DM and KSEA interactions. Mod. Phys. Lett. A 36(29), 2150209 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  47. Rahman, A.U., Abd-Rabbou, M.Y., Zangi, S.M., Javed, M.: Entropic uncertainty and quantum correlations dynamics in a system of two qutrits exposed to local noisy channels. Phys. Scr. 97(10), 105101 (2022)

    Article  ADS  Google Scholar 

  48. Rahman, A.U., Zidan, N., Zangi, S.M., Javed, M., Ali, H.: Quantum memory-assisted entropic uncertainty and entanglement dynamics: two qubits coupled with local fields and Ornstein Uhlenbeck noise. Quantum Inf. Process. 21(10), 354 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  49. Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Ye, L.: Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals. Laser Phys. Lett. 14(9), 095204 (2017)

    Article  ADS  Google Scholar 

  50. Haddadi, S., Pourkarimi, M.R., Haseli, S.: Multipartite uncertainty relation with quantum memory. Sci. Rep. 11(1), 13752 (2021)

    Article  ADS  Google Scholar 

  51. Wu, L., Ye, L., Wang, D.: Tighter generalized entropic uncertainty relations in multipartite systems. Phys. Rev. A 106(6), 062219 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  52. Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89(1), 015002 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  53. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7(10), 757–761 (2011)

    Article  Google Scholar 

  54. Li, C.F., Xu, J.S., Xu, X.Y., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7(10), 752–756 (2011)

    Article  Google Scholar 

  55. Huangjun, Z.: Zero uncertainty states in the presence of quantum memory. NPJ Quantum Inf. 7(1), 47 (2021)

    Article  Google Scholar 

  56. Majtey, A.P., Lamberti, P.W., Prato, D.P.: Jensen–Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A 72(5), 052310 (2005)

    Article  ADS  Google Scholar 

  57. Briët, J., Harremoës, P.: Properties of classical and quantum Jensen–Shannon divergence. Phys. Rev. A 79(5), 052311 (2009)

    Article  ADS  Google Scholar 

  58. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116(15), 150504 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.O. acknowledges the financial support provided by the Moroccan National Center for Scientific and Technical Research (CNRST) under the Program of Excellence Grants for Research.

Author information

Authors and Affiliations

Authors

Contributions

MM has put forward the idea of the manuscript. ZD performed the computations and graphical tasks. MO has interpreted the results. All authors have contributed to writing the manuscript. MM supervised the findings of this work. All authors have reviewed and agreed to the final version of the manuscript.

Corresponding author

Correspondence to M. Oumennana.

Ethics declarations

Conflicts of interest

All authors state that they have no identified competing financial interests that could have arisen to impact this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oumennana, M., Dahbi, Z. & Mansour, M. Coherence versus quantum-memory-assisted entropic uncertainty relation of double quantum dots with Rashba spin–orbit interaction. Quantum Inf Process 23, 114 (2024). https://doi.org/10.1007/s11128-024-04325-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04325-w

Keywords

Navigation