Skip to main content

Advertisement

Log in

Evolving quantum circuits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We develop genetic algorithms for searching quantum circuits, in particular stabilizer quantum error correction codes. Quantum codes equivalent to notable examples such as the 5-qubit perfect code, Shor’s code and the 7-qubit color code are evolved out of initially random quantum circuits. We anticipate evolution as a promising tool in the NISQ era, with applications such as the search for novel topological ordered states, quantum compiling and hardware optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bialek, W.: Biophysics: Searching for Principles (Princeton University Press, 2012)

  2. Kauffman, S.A.: World Beyond Physics: The Emergence and Evolution of Life. Oxford University Press, USA (2019)

    Google Scholar 

  3. Xavier, J.C., et al.: Autocatalytic chemical networks at theorigin of metabolism. Proc. R. Soc. B 287, 20192377 (2020)

  4. Lau, B., et al.: An Introduction to Ratchets in Chemistry and Biology. Materials Horizons (2017)

  5. Alberts, B., Bray, D., Hopkin, K., Johnson, A.D., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology (Garland Science, 2015)

  6. Kauffman, S., Roli, A.: The world is not a theorem. Entropy 23, https://doi.org/10.3390/e23111467 (2021)

  7. Piatkevich, K.D., et al.: A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat Chem Biol. 14, 352 (2018)

  8. Shor, P.W.: Why haven’t more quantum algorithms been found? J. ACM 50, 87 (2003)

    MathSciNet  Google Scholar 

  9. Martyn, J.M., Rossi, Z.M., Tan, A.K., Chuang, I.L.: Grand unification of quantum algorithms. PRX Quantum 2, 040203 (2021)

    ADS  Google Scholar 

  10. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information (American Association of Physics Teachers, 2002)

  11. Bravyi, S., Gosset, D., König, R.: Quantum advantage with shallow circuits. Science 362, 308 (2018)

    ADS  MathSciNet  Google Scholar 

  12. Iten, R., Metger, T., Wilming, H., del Rio, L., Renner, R.: Discovering physical concepts with neural networks. Phys. Rev. Lett. 124, 010508 (2020)

    ADS  Google Scholar 

  13. Cranmer, M., et al.: Discovering symbolic models from deep learning with inductive biases, arXiv:2006.11287 (2020)

  14. Cranmer, M., et al.: Lagrangian neural networks, arXiv:2003.04630 (2020)

  15. O’Leary, J., Paulson, J.A. and Mesbah, A.,: Stochastic physics-informed neural networks (spinn): a momentmatching framework for learning hidden physics within stochastic differential equations, arXiv:2109.01621 (2021)

  16. Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., Zeilinger, A.: Automated search for new quantum experiments. Phys. Rev. Lett. 116, 090405 (2016)

    ADS  Google Scholar 

  17. Arrazola, J.M., et al.: Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Sci. Technol. 4, 024004 (2019)

  18. Krenn, M., Erhard, M., Zeilinger, A.: Computer-inspired quantum experiments. Nature Rev. Phys. 2, 649 (2020)

  19. Knott, P.A.: A search algorithm for quantum state engineering and metrology. New J. Phys. 18, 073033 (2016)

    ADS  Google Scholar 

  20. Nichols, R., et al.: Designing quantum experiments with a genetic algorithm. Quantum Sci. Technol. 4, 045012 (2019)

  21. Rambhatla, K., D’Aurelio, S.E., Valeri, M., Polino, E., Spagnolo, N., Sciarrino, F.: Adaptive phase estimation through a genetic algorithm. Phys. Rev. Res. 2, 033078 (2020)

    Google Scholar 

  22. Carleo, G., Troyer, M.: Solving the quantum manybody problem with artificial neural networks. Science 355 (2017)

  23. Gao, J., Qiao, L.-F., Jiao, Z.-Q., Ma, Y.-C., Hu, C.-Q., Ren, R.- J., Yang, A.-L., Tang, H., Yung, M.-H., Jin, X.-M.: Experimental machine learning of quantum states. Phys. Rev. Lett. 120, 240501 (2018)

  24. Canabarro, A., Brito, S., Chaves, R.: Machine learning nonlocal correlations. Phys. Rev. Lett. 122, 200401 (2019)

    ADS  Google Scholar 

  25. Kriváchy, T., Cai, Y., Cavalcanti, D., Tavakoli, A., Gisin, N., Brunner, N.: A neural network oracle for quantum nonlocality problems in networks. npj Quantum Inf. 6, 1 (2020)

  26. Wang, Z., Rajabzadeh, T., Lee, N., Safavi-Naeini, A.H.: Automated discovery of autonomous quantum error correction schemes. PRX Quantum 3, 020302 (2022)

  27. Wołos, A., et al.: Synthetic connectivity, emergence, and self regeneration in the network of prebiotic chemistry. Science 369, 1584 (2020)

  28. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. Proc. AAAI Conf. Artif. Intell. 33, 4780–4789 (2019)

    Google Scholar 

  29. Olsson, C., Bhupatiraju, S., Brown, T., Odena, A., Goodfellow, I.: Skill rating for generative models, arXiv preprint arXiv:1808.04888 (2018)

  30. Poulin, D., Qarry, A., Somma, R., Verstraete, F.: Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. Phys. Rev. Lett. 106, 170501 (2011)

    ADS  Google Scholar 

  31. Susskind, L.: Three lectures on complexity and black holes, arXiv:1810.11563 (2018)

  32. Brandao, F.G., Chemissany, W., Hunter-Jones, N., Kueng, R., Preskill, J.: Models of quantum complexity growth. PRX Quantum 2, 030316 (2021)

  33. Zhang, G.: Quantum-inspired evolutionary algorithms: a survey and empirical study. J. Heuristics 17, 303 (2011)

    Google Scholar 

  34. Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Finding a better-than-classical quantum and/or algorithm using genetic programming. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Vol. 3 (IEEE, 1999), pp. 2239–2246

  35. Grigorenko, I., Garcia, M.E.: Ground-state wave functions of two-particle systems determined using quantum genetic algorithms. Physica A 291, 439 (2001)

    ADS  MathSciNet  Google Scholar 

  36. Grigorenko, I., Garcia, M.: Calculation of the partition function using quantum genetic algorithms. Physica A 313, 463 (2002)

    ADS  MathSciNet  Google Scholar 

  37. Koza, J.R., Al-Sakran, S.H., Jones, L.W.: Crossdomain features of runs of genetic programming used to evolve designs for analog circuits, optical lens systems, controllers, antennas, mechanical systems, and quantum computing circuits. In: 2005 NASA/DoD Conference on Evolvable Hardware (EH’05) (IEEE, 2005), pp. 205–212

  38. Şahin, M., Tomak, M.: The self-consistent calculation of a spherical quantum dot: a quantum genetic algorithm study. Physica E 28, 247 (2005)

    ADS  Google Scholar 

  39. Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Genetic programming for quantum computers. Genetic Program. 365 (1998)

  40. Rylander, B., Soule, T., Foster, J.A., Alves-Foss, J.: Quantum genetic algorithms. In: GECCO, p. 373 (2000)

  41. Malossini, A., Blanzieri, E., Calarco, T.: QGA: a quantum genetic algorithm (2004)

  42. Sofge, D.A.: Toward a framework for quantum evolutionary computation. In: 2006 IEEE Conference on Cybernetics and Intelligent Systems (IEEE, 2006), pp. 1–6

  43. Udrescu, M., Prodan, L., Vlŭduţiu, M.: Implementing quantum genetic algorithms: a solution based on Grover’s algorithm. In: Proceedings of the 3rd Conference on Computing Frontiers, pp. 71–82 (2006)

  44. Moore, M., Narayanan, A.: Quantum-Inspired Computing. Department of Computer Science, University Exeter, Exeter (1995)

  45. Zhou, S., Sun, Z.: A new approach belonging to edas: quantum-inspired genetic algorithm with only one chromosome. In: International Conference on Natural Computation (Springer, 2005) pp. 141–150

  46. Pötz,, W., Fabian, J., Hohenester, U.: Quantum Coherence: From Quarks to Solids, vol. 689 (Springer, 2006)

  47. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)

  48. Wu, Y., Bao, W.-S., Cao, S., Chen, F., Chen, M.-C., Chen, X., Chung, T.-H., Deng, H., Du, Y., Fan, D., Gong, M., Guo, C., Guo, C., Guo, S., Han, L., Hong, L., Huang, H.-L., Huo, Y.-H., Li, L., Li, N., Li, S., Li, Y., Liang, F., Lin, C., Lin, J., Qian, H., Qiao, D., Rong, H., Su, H., Sun, L., Wang, L., Wang, S., Wu, D., Xu, Y., Yan, K., Yang, W., Yang, Y., Ye, Y., Yin, J., Ying, C., Yu, J., Zha, C., Zhang, C., Zhang, H., Zhang, K., Zhang, Y., Zhao, H., Zhao, Y., Zhou, L., Zhu, Q., Lu, C.-Y., Peng, C.-Z., Zhu, X., Pan, J.-W.: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021)

    ADS  Google Scholar 

  49. Chow, J., Dial, O., Gambetta, J.: IBM Quantum breaks the 100 qubit barrier, Tech. Rep. (IBM, https://research.ibm.com/blog/127-qubit-quantumprocessor-eagle, 2021)

  50. Postler, L., et al.: Demonstration of fault-tolerant universal quantum gate operations, arXiv:2111.12654 (2021)

  51. Gottesman, D.: Stabilizer codes and quantum error correction, Ph.D. thesis, California Institute of Technology (1997)

  52. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)

    ADS  Google Scholar 

  53. Gidney, C.: Stim: a fast stabilizer circuit simulator. Quantum 5, 497 (2021)

    Google Scholar 

  54. Roffe, J.: Quantum Error Correction: An Introductory Guide. Contemporary Physics (2019)

  55. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)

    ADS  Google Scholar 

  56. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, https://doi.org/10.1103/PhysRevA.52.R2493 (1995)

  57. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405 (1997)

    ADS  MathSciNet  Google Scholar 

  58. Kubica, A.M.: The ABCs of the color code: a study of topological quantum codes as toy models for fault tolerant quantum computation and quantum phases of matter, Ph.D. thesis, California Institute of Technology (2018)

  59. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Google Scholar 

  60. Li, Y., Fisher, M.P.: Statistical mechanics of quantum error correcting codes. Phys. Rev. B 103, 104306 (2021)

    ADS  Google Scholar 

  61. Nielsen, M.A.: A geometric approach to quantum circuit lower bounds, arXiv preprint arXiv:quant-ph/0502070 (2005)

  62. Brown, A.R., Susskind, L.: Complexity geometry of a single qubit. Phys. Rev. D 100, 046020 (2019)

    ADS  MathSciNet  Google Scholar 

  63. Dekel, E., Alon, U.: Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588 (2005)

    ADS  Google Scholar 

  64. Kiani, B.T., Lloyd, S., Maity, R.: Learning unitaries by gradient descent, arXiv preprint arXiv:2001.11897 (2020)

  65. Heyfron, L.E., Campbell, E.T.: An efficient quantum compiler that reduces t count. Quantum Sci. Technol. 4, 015004 (2018)

    ADS  Google Scholar 

  66. Nam, Y., Ross, N.J., Su, Y., Childs, A.M., Maslov, D.: Automated optimization of large quantum circuits with continuous parameters. npj Quantum Inf. 4, 1 (2018)

  67. Jones, T., Benjamin, S.C.: Robust quantum compilation and circuit optimisation via energy minimisation. Quantum 6, 628 (2022)

    Google Scholar 

  68. Kosut, R.L., Shabani, A., Lidar, D.A.: Robust quantum error correction via convex optimization. Phys. Rev. Lett. 100, 020502 (2008)

    ADS  Google Scholar 

  69. Taghavi, S., Kosut, R.L., Lidar, D.A.: Channeloptimized quantum error correction. IEEE Trans. Inf. Theory 56, 1461 (2010)

    Google Scholar 

  70. Kosut, R.L., Lidar, D.A.: Quantum error correction via convex optimization. Quantum Inf. Process. 8, 443 (2009)

    MathSciNet  Google Scholar 

  71. Berta, M., Borderi, F., Fawzi, O., Scholz, V.B.: Semidefinite programming hierarchies for constrained bilinear optimization. Math. Program. 1 (2021)

  72. Chen, H., Vasmer, M., Breuckmann, N.P., Grant, E.: Machine learning logical gates for quantum error correction, arXiv preprint arXiv:1912.10063 (2019)

  73. Bausch, J., Leditzky, F.: Quantum codes from neural networks. New J. Phys. 22, 023005 (2020)

    ADS  MathSciNet  Google Scholar 

  74. Fösel, T., Tighineanu, P., Weiss, T., Marquardt, F.: Reinforcement learning with neural networks for quantum feedback. Phys. Rev. X 8, 031084 (2018)

    Google Scholar 

  75. Williams, C.P., Gray, A.G.: Automated design of quantum circuits. In: Quantum Computing and Quantum Communications: first NASA International Conference, QCQC’98 Palm Springs, California, USA February 17–20, 1998 Selected Papers (Springer, 1999), pp. 113–125

  76. Yabuki, T., Iba, H.: Genetic algorithms for quantum circuit design-evolving a simpler teleportation circuit. In: Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, pp. 421–425 (2000)

  77. Giraldi, G., Thess, R., Faber, J.: Learning linear operators by genetic algorithms, LNCC-National Laboratory for Scientific Computing. Tech, Rep (2003)

  78. Lamata, L., Alvarez-Rodriguez, U., Martín- Guerrero, J.D., Sanz, M., Solano, E.: Quantum autoencoders via quantum adders with genetic algorithms. Quantum Sci. Technol. 4, 014007 (2018)

  79. Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O’Neil, J., Little, C.T.: Evidence for early life in earth’s oldest hydrothermal vent precipitates. Nature 543, 60 (2017)

    ADS  Google Scholar 

  80. Darwin, C.: On the Origin of Species, 1859 (Routledge, 2004)

  81. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Trans. Neural Netw. 5, 3 (1994)

    Google Scholar 

  82. Fraser, A.S.: Simulation of genetic systems by automatic digital computers I. introduction. Austral. J. Biol. Sci. 10, 484 (1957)

  83. Barker, J.: Simulation of genetic systems by automatic digital computers. Aust. J. Biol. Sci. 11, 603 (1958)

    Google Scholar 

  84. Bremermann, H.J., et al.: Optimization through evolution and recombination. Self-organizing Syst. 93, 106 (1962)

    Google Scholar 

  85. Bremermann, H.J.: Numerical optimization procedures derived from biological evolution processes. Cybern. Probl. Bionics, 597 (1968)

  86. Bremermann, H.J., Rogson, M.: An evolutiontype search method for convex sets., Tech. Rep. (California Univ Berkeley, 1964)

  87. Reed, J., Toombs, R., Barricelli, N.A.: Simulation of biological evolution and machine learning: I. Selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. J. Theor. Biol. 17, 319 (1967)

  88. Sampson, J.R.: Adaptation in natural and artificial systems (John H. Holland) (1976)

  89. Bartz-Beielstein, T., Branke, J., Mehnen, J., Mersmann, O.: Evolutionary algorithms, Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 4, 178 (2014)

  90. Roth, S.C.: What is genomic medicine? J. Med. Lib. Assoc.: JMLA 107, 442 (2019)

    Google Scholar 

  91. Pierce, B.A.: Genetics: A Conceptual Approach (Macmillan, 2012)

  92. Gavrilets, S.: Fitness Landscapes and the Origin of Species (MPB-41) (Princeton University Press, 2004)

  93. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11 (1987)

    ADS  MathSciNet  Google Scholar 

  94. Holland, J.H.: Adaptation in Natural and aRtificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, 1992)

  95. Eiben,, A.E., Raue, P.-E., Ruttkay, Z.: Genetic algorithms with multi-parent recombination. In: International Conference on Parallel Problem Solving from Nature (Springer, 1994), pp. 78–87

  96. Ting, C.-K.: On the mean convergence time of multiparent genetic algorithms without selection. In: European Conference on Artificial Life (Springer, 2005) pp. 403–412

  97. Nahum, A., Ruhman, J., Vijay, S., Haah, J.: Quantum entanglement growth under random unitary dynamics. Phys. Rev. X 7, 031016 (2017)

    Google Scholar 

  98. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    ADS  MathSciNet  Google Scholar 

  99. Nickerson, N.H., Fitzsimons, J.F., Benjamin, S.C.: Freely scalable quantum technologies using cells of 5- to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014)

    Google Scholar 

  100. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quantum computing. In: 2016 IEEE International Conference on Rebooting Computing (ICRC) (IEEE, 2016), pp. 1–6

  101. O’Gorman, J., Nickerson, N.H., Ross, P., Morton, J.J., Benjamin, S.C.: A silicon-based surface code quantum computer. npj Quantum Inf. 2, 1 (2016)

  102. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54, 1862 (1996)

    ADS  MathSciNet  Google Scholar 

  103. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    ADS  Google Scholar 

  104. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 452, 2551 (1996)

  105. Bermudez, A., Xu, X., Nigmatullin, R., O’Gorman, J., Negnevitsky, V., Schindler, P., Monz, T., Poschinger, U., Hempel, C., Home, J., et al.: Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X 7, 041061 (2017)

    Google Scholar 

  106. Gullans, M.J., Huse, D.A.: Dynamical purification phase transition induced by quantum measurements. Phys. Rev. X 10, 041020 (2020)

    Google Scholar 

  107. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)

    ADS  MathSciNet  Google Scholar 

  108. Levin, M., Wen, X.-G.: Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006)

    ADS  Google Scholar 

  109. Su, V.P., Cao, C., Hu, H.-Y., Yanay, Y., Tahan, C., Swingle, B.: Discovery of optimal quantum error correcting codes via reinforcement learning, arXiv preprint arXiv:2305.06378 (2023)

  110. Mauron, C., Farrelly, T., Stace, T.M.: Optimization of tensor network codes with reinforcement learning, arXiv preprint arXiv:2305.11470 (2023)

  111. Harrow, A.: Quantum compiling, Ph.D. thesis, Citeseer (2001)

  112. Khatri, S., LaRose, R., Poremba, A., Cincio, L., Sornborger, A.T., Coles, P.J.: Quantum-assisted quantum compiling. Quantum 3, 140 (2019)

    Google Scholar 

  113. Venturelli, D., Do, M., Rieffel, E., Frank, J.: Compiling quantum circuits to realistic hardware architectures using temporal planners. Quantum Sci. Technol. 3, 025004 (2018)

    ADS  Google Scholar 

  114. Booth, K.E., Do, M., Beck, J.C., Rieffel, E., Venturelli, D., Frank, J.: Comparing and integrating constraint programming and temporal planning for quantum circuit compilation. In: Twenty-Eighth International Conference on Automated Planning and Scheduling (2018)

  115. Cincio, L., Subaşý, Y., Sornborger, A.T., Coles, P.J.: Learning the quantum algorithm for state overlap. New J. Phys. 20, 113022 (2018)

    ADS  Google Scholar 

  116. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 436 (2008)

    Google Scholar 

  117. Booth Jr, J.: Quantum compiler optimizations, arXiv preprint arXiv:1206.3348 (2012)

  118. Chong, F.T., Franklin, D., Martonosi, M.: Programming languages and compiler design for realistic quantum hardware. Nature 549, 180 (2017)

    ADS  Google Scholar 

  119. Heyfron, L.E., Campbell, E.T.: An efficient quantum compiler that reduces t count. Quantum Sci. Technol. 4, 015004 (2018)

    ADS  Google Scholar 

  120. Häner, T., Steiger, D.S., Svore, K., Troyer, M.: A software methodology for compiling quantum programs. Quantum Sci. Technol. 3, 020501 (2018)

    ADS  Google Scholar 

  121. McClure, D., Gambetta, J.: Quantum computation center opens, https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/ [Online; accessed 9-April-2022] (2019)

  122. Tandeitnik, D.: Evolving quantum circuits, https://github.com/tandeitnik/Evolving_Quantum_Circuits (2022)

  123. Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60, 226 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Bruno Suassuna, Igor Brandão, Lucianno Defaveri, George Svetlichny, Stuart Kauffman, Ernesto Galvão and Guilherme Temporão for useful discussions.

Funding

This study was financed in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We would like to thank the support received by CNPq Scholarship No. 132606/2020-8, FAPERJ Scholarship No. 2021.01394.9, and CNPq Scholarship No. 140197/2022-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tandeitnik.

Ethics declarations

Competing Interests and Code Availability

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. All scripts used in this work are available in the GitHub repository [122], which can be used to replicate the data exposed in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Brief review of QECC stabilizer codes

The main objective of a QECC is to protect k data-qubit registers from a set of errors \(\mathcal {E}\). By protection, it means that the code must be able to detect and correct any error in \(\mathcal {E}\). Figure 16 summarizes the general structure of a [[nkd]] stabilizer error correction code. It is divided into three stages: encoding, syndrome extraction and correction. We now describe each stage in detail.

Fig. 16
figure 16

Generic circuit of a [[nkd]] stabilizer error correction code. a A data register \(\vert \psi \rangle _D\) is entangled with \(n-k\) redundancy qubits via an EC to form the logical state \(\vert \psi \rangle _L\). b After a potential error E occurs, ancilla qubits are attached to \(\vert \psi \rangle _L\), and m syndrome measurements \(P_i\) are performed. The result of the measurements produces the syndrome. c With the syndrome, one queries the syndrome table, and the appropriate correction R is appointed and applied. This process is represented by the Decoder gate. The double-line channels symbolize classical communication

On the encoding stage, Fig. 16a, a k-qubit data-state \(\vert \psi \rangle _D\) is entangled with \(m = n-k\) auxiliary qubits via an EC forming a n-qubit logical state \(\vert \psi \rangle _L\). The EC defines the set of codewords \(\mathcal {C} = \lbrace \vert c_i\rangle _L\rbrace _i\), which specify how the other stages of the code function. In general, \(\vert \mathcal {C}\vert = 2^k\). For example, for \(k = 2\), the encoding stage maps \(\lbrace \vert 00\rangle ,\vert 01\rangle ,\vert 10\rangle ,\vert 11\rangle \rbrace \) into four mutually orthogonal codewords in an expanded Hilbert space.

During syndrome extraction, errors are detected by performing m syndrome measurements as shown in Fig. 16b. The codewords define a group of common stabilizers spanned by m generators [51]. Let \(\mathcal {P} = \lbrace P_i \rbrace \) be a set of generators for the common stabilizer group of \(\mathcal {C}\). We refer to the elements of \(\mathcal {P}\) as syndrome operators. It follows that syndrome operators satisfy the following properties [123]:

  1. 1.

    \(\mathcal {P} \subseteq \mathcal {G}_n\);

  2. 2.

    \(P_i\vert \psi \rangle _{L,j} = +1\vert \psi \rangle _{L,j} \, \forall \, i,j\);

  3. 3.

    \([P_i,P_j] = 0 \, \forall \, i,j\),

where \(\mathcal {G}_n\) is the general n-qubit Pauli group defined as the set composed of all tensor product combinations of the elements of \(\mathcal {G}_1 = \lbrace \pm I,\pm iI, \pm X,\pm iX, \pm Y,\pm iY, \pm Z,\pm iZ \rbrace \). Property 2 ensures that the syndrome measurements do not further disturb the damaged logical state, and property 3 allows one to perform measurements in any order.

Let \(E \in \mathcal {E}\) be an error that occurred between the encoding and syndrome extraction stages. The effect of each syndrome measurement is to map \(E\vert \psi \rangle _L\) into the superposition

$$\begin{aligned} E&\vert \psi \rangle _L\vert 0\rangle _{A_i} \rightarrow \nonumber \\&\frac{1}{2}\left[ (I+P_i)E\vert \psi \rangle _L\vert 0\rangle _{A_i} + (I-P_i)E\vert \psi \rangle _L\vert 1\rangle _{A_i}\right] . \end{aligned}$$
(A1)

Note that E necessarily either commutes or anti-commutes with \(S_i\) since \(E,P_i \in \mathcal {G}_n\). If E and \(P_i\) commutes (anti-commutes), the final state is unequivocally \(E\vert \psi \rangle _L\vert 0\rangle _{A_i}\) (\(E\vert \psi \rangle _L\vert 1\rangle _{A_i}\)). Therefore, each syndrome measurement can be understood as a deterministic measurement of the state with the outcome revealing whether the error commutes or anti-commutes with the syndrome operator. At the end of the syndrome extraction stage, one is left with a binary syndrome string of length m whose i-th entry encodes whether \(P_i\) and E commute or not.

Given \(\mathcal {E}\) and \(\mathcal {P}\), one builds the so-called syndrome table relating each error to the corresponding syndrome string it generates. As an illustration, Table 2 shows the syndrome table for the 3-qubit code with \(\mathcal {P} = \lbrace Z_1Z_2,Z_2Z_3\rbrace \), and considering errors with weight one on three qubits. Note that the syndromes for \(Z_i\) are composed only of zeros, which is the same syndrome for \(E = I\) since the identity commutes with any operator. These errors are classified as undetectable [51] as they are not distinguishable from I.

Table 2 3-qubit code syndrome table for single-qubit errors

Finally, in the correction stage, one prescribes an operator R for which

$$\begin{aligned} RE\vert \psi \rangle _L = \vert \psi \rangle _L. \end{aligned}$$
(A2)

Since Pauli operators square to the identity, R is, in principle, identical to the appointed error guided by the syndrome table. The decoder gate of Fig. 16c is a crosscheck, performed in a classical computer, between the extracted syndrome and its related error on the syndrome table. This scheme functions perfectly for non-degenerate codes, where a one-to-one correspondence between errors and syndromes exists. On the other hand, for degenerate codes, multiple errors can produce the same syndrome. For a successful correction, all two-on-two combinations of errors with the same syndrome must stabilize all codewords. Consider an arbitrary correction code with codewords \(\lbrace \vert c_i\rangle _L\rbrace \), and let \(\lbrace E_i \rbrace \) be a set of errors with the same syndrome. One requires

$$\begin{aligned} E_iE_j\vert c_k\rangle _L = +\vert c_k\rangle _L \, \forall i,j,k \end{aligned}$$
(A3)

for \(\lbrace E_i \rbrace \) to be correctable. If the above condition is met, applying any element of \(\lbrace E_i \rbrace \) will restore the logical state even though it is impossible to single out which error actually took place. If for some pairing \(E_iE_j\) Equation (A3) is not satisfied, the set \(\lbrace E_i \rbrace \) is classified as uncorrectable, since it is impossible to decide the proper correction operation.

Appendix B: Generating sets of codewords

Given an EC, applying it to the \(\vert 0\rangle ^{\otimes n}\) state generates a first possible codeword \(\vert c_0\rangle \). Recollecting that codewords form a set of mutually orthogonal states, we create a method to build \(2^{n}-1\) mutually orthogonal states to \(\vert c_0\rangle \) which will give us a set of \(2^n\) potential codewords (since we work with qubits, a n-dimensional Hilbert space is spawned by \(2^n\) states) \(\lbrace \vert c_i\rangle \rbrace \). In possession of \(\lbrace \vert c_i\rangle \rbrace \), it remains to evaluate the corrigibility degree \( \mathcal {C} \) of subsets. To generate states orthogonal to \(\vert c_0\rangle \), we find a set of logical \(\mathcal {X} \equiv \lbrace \bar{X}_i\rbrace \) operators such that

$$\begin{aligned} \bar{X}_i\vert c_0\rangle&= \vert c_i\rangle \end{aligned}$$
(B1)
$$\begin{aligned} \langle c_i\vert \vert c_j\rangle&= \delta _{ij} \end{aligned}$$
(B2)

\(\forall i \in \lbrace 1,\dots ,2^{n-1}\rbrace \).

There is a systematic method to build a particular (non-unique) set \(\mathcal {X}\) that satisfies the above equations starting from the computational basis. Consider the n-qubit computational basis. Starting from \(\vert \psi _{0,I}\rangle = \vert 0\rangle ^{\otimes n}\,\) (the first subscript 0 refers to \(\vert 0\rangle ^{\otimes n}\) and the I subscript stands for the identity), it is straightforward to verify that the logical \(\lbrace \bar{X}_{i,I}\rbrace \) operators that take \(\vert \psi _{0,I}\rangle \) to the other states of the basis \(\vert \psi _{i,I}\rangle \)—which are mutually orthogonal by definition—are all the \(2^n-1\) tensor product combinations of Pauli letters X and I possessing at least one X. Define \([\bar{X}_I]\) as a \(2^n-1 \times n\) matrix whose rows are \(\lbrace \bar{X}_{i,I}\rbrace \):

$$\begin{aligned}{}[\bar{X}_I] = \begin{bmatrix} X &{} I &{} I &{}\dots &{} I &{} I\\ I &{} X &{} I &{}\dots &{} I &{} I\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ I &{} I &{} I &{}\dots &{} I &{} X\\ X &{} X &{} I &{}\dots &{} I &{} I\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ X &{} X &{} X &{}\dots &{} X &{} X \end{bmatrix}. \end{aligned}$$
(B3)

Notice that \(\lbrace \bar{X}_{i,I}\rbrace \) satisfies Eqs. (B1) and (B2). Let \(\vert \psi _{0,U}\rangle = U\vert \psi _{0,I}\rangle \), where U is some unitary computation. The operator U transforms each \(\bar{X}_{i,I}\) into \(\bar{X}_{i,U} \equiv U\bar{X}_{i,I}U^\dagger \) such that

$$\begin{aligned} \langle \psi _{0,U}\vert \bar{X}_{i,U}\vert \psi _{0,U}\rangle&= \langle \psi _{0,I}\vert U^\dagger U\bar{X}_{i,I}U^\dagger U\vert \psi _{0,I}\rangle \nonumber \\&= \langle \psi _{0,I}\vert \bar{X}_{i,I}\vert \psi _{0,I}\rangle \nonumber \\&= 0 \end{aligned}$$
(B4)

\(\forall i\). Each \(\bar{X}_{i,U}\) is distinct since if \(\bar{X}_{i,U} = \bar{X}_{j,U}\) for some ij, then

$$\begin{aligned} U\left( \bar{X}_{i,I}-\bar{X}_{j,I}\right) U^\dagger = 0. \end{aligned}$$
(B5)

Since \(U \ne 0\) and \(\lbrace \bar{X}_{i,I}\rbrace \) are different by construction, then forcibly \(i = j\). We conclude that \(\lbrace \bar{X}_{i,U}\rbrace \) forms a set of logical operators whose elements take \(\vert \psi _{0,U}\rangle \) into \(2^n-1\) unique mutually orthogonal states \(\vert \psi _{i,U}\rangle \). Taking the particular case of U as an EC, \(\mathcal {X} = \lbrace \bar{X}_{i,\textrm{EC}}\rbrace \) is the set we seek.

There is a significant computational cost in evaluating the corrigibility degree \( \mathcal {C} \) for each subset of \(\lbrace \vert c_i\rangle \rbrace \) due to the large number of subsets. To overcome this, we simplify our approach by considering a limited number of subsets. First, we limited ourselves to evolving QECCs with two-dimensional code spaces, which leads to an \(O\left( 2^{2n-1}\right) \) number of subsets to consider for each tentative EC (a significant but not sufficient reduction). Second, by appealing to symmetry, we make the heuristic argument that we can fix one of the codewords, as \(\vert c_0\rangle \) without loss, and only consider subsets of the form \(\lbrace \vert c_0\rangle , \vert c_i\rangle \rbrace \) for \(i = 1,\dots ,2^{n}-1\).

Appendix C: Qubit overhead

Let n be the Hilbert space dimension of a QECC. Considering errors as a product of Pauli operators, we express a general error by assigning a Pauli letter for each vector entry of the form \(\varvec{E} = (a_1,a_2,\dots ,a_n)\). Define \(n_e(n,t)\) as the number of errors with weight t. For \(t = 1\), each possible error can be constructed by choosing one of the n entries of \(\varvec{E}\) and assigning one of three Pauli letters \(\lbrace X,Y,Z\rbrace \). Therefore,

$$\begin{aligned} n_e(n,1) = {n \atopwithdelims ()1} \times 3. \end{aligned}$$
(C1)

For \(t = 2\), the reasoning is similar: we choose two entries in n to allocate the errors and, for each entry, we choose one of three Pauli letters. Thus,

$$\begin{aligned} n_e(n,2) = {n \atopwithdelims ()2} \times 3^2. \end{aligned}$$
(C2)

This reasoning holds true for any \(t \le n\). Therefore, the general formula for \(n_e(n,t)\) is given by

$$\begin{aligned} n_e(n,t) = {n \atopwithdelims ()t} \times 3^t. \end{aligned}$$
(C3)

For error correction, we are interested in detecting and correcting errors with weight up to t. Let s(nt) denote all possible errors up to weight t, i.e., the number of errors with weight less or equal to t. It follows that

$$\begin{aligned} s(n,t) = \sum _{i=1}^t n_e(n,i) = \sum _{i=1}^t {n \atopwithdelims ()i} \times 3^i. \end{aligned}$$
(C4)

With s(nt), we can derive the minimum number of qubits necessary for constructing a non-degenerate quantum error correction code capable of handling errors up to a weight t.

The argument goes as follows: if the codewords are made by n qubits, then at most \(n-1\) auxiliary ancilla qubits are employed in the syndrome measurement stage. Therefore, the syndrome is a vector with at most \(n-1\) binary entries. Since there exist \(2^{n-1}\) binary vectors with \(n-1\) entries and at least one distinct vector must be assigned to each particular error, there must exist at least as many binary vectors as the number of possible errors for a non-degenerate error correction code to be able to correct all errors up to weight t:

$$\begin{aligned} s(n,t) + 1 \le 2^{n-1} \end{aligned}$$
(C5)

To account for the case in which no errors occurred, 1 is added to the LHS of Equation (C5).

For \(t = 1\), it follows

$$\begin{aligned} {n \atopwithdelims ()1} \times 3 + 1 = 3n + 1\le 2^{n-1}. \end{aligned}$$
(C6)

Note that \(n = 5\) saturates the inequality (C6), therefore it is of no use to try to build a QECC with less then 5 qubits; non-degenerate 5-qubits codes that correct single-qubit errors are called perfect codes [51, 55] since they have the property of using every available syndrome for 5 qubits.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandeitnik, D., Guerreiro, T. Evolving quantum circuits. Quantum Inf Process 23, 109 (2024). https://doi.org/10.1007/s11128-024-04317-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04317-w

Keywords

Navigation