Skip to main content
Log in

Quantum power iteration to efficiently obtain the dominant eigenvector from diagonalizable nonnegative matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This manuscript presents a quantum computing implementation of power iteration for diagonalizable nonnegative matrices that offers a significant speed increase for large matrices, achieving \(O(K\hbox {max}(m_i)+N)\) time complexity for each iteration. The computational approach presented in this manuscript may be directly applied to numerous other algorithms derived from power iteration, ultimately allowing near-term quantum devices to facilitate a broad range of analyses that would otherwise be infeasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Other methods to do so exist, such as that of [10]. When applied to matrix-by-vector multiplication [10], achieves \(O(N\hbox {log}_{2}N)\) time complexity, compared with \(O(K\hbox {max}(m_i)+N)\) for quantum power iteration. However, as will be shown in Sect. 4, K does not need to be increased alongside N, such that K can be held constant regardless of matrix size. Likewise, \(\max (m_i)\le N\). Consequently, the matrix-by-vector technique presented here improves on [10] by a factor of \(\hbox {log}_{2}N\).

References

  1. Shao, C.: Computing Eigenvalues of Diagonalizable Matrices in a Quantum Computer. Preprint at https://arxiv.org/pdf/1912.08015v3.pdf (2020)

  2. Panza, M.J.: Application of power method and dominant eigenvector/eigenvalue concept for approximate eigenspace solutions to mechanical engineering algebraic systems. Am. J. Mech. Eng. 6(3), 98–113 (2018). https://doi.org/10.12691/ajme-6-3-3

    Article  Google Scholar 

  3. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  4. Hodel, A.S., Tenison, B., Poolla, K.R.: Numerical solution of the lyapunov equation by approximate power iteration. Linear Algebra Appl. 236, 205–230 (1996). https://doi.org/10.1016/0024-3795(94)00155-3

    Article  MathSciNet  Google Scholar 

  5. Statista: Number of Monthly Active Facebook Users Worldwide as of 4th Quarter 2020 (2021). https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/. Accessed 30 Apr 2020

  6. Sun, Z., Pedretti, G., Ambrosi, E., Bricalli, A., Ielmini, D.: In-memory eigenvector computation in time o(1). Adv. Intell. Syst. 2 (2020). https://doi.org/10.1002/aisy.202000042

  7. Fieback, M., Münch, C., Gebregiorgis, A., Medeiros, G.C., Taouil, M., Hamdioui, S., Tahoori, M.: PVT analysis for RRAM and STT-MRAM-based logic computation-in-memory. In: 2022 IEEE European Test Symposium (2022). https://doi.org/10.1109/ETS54262.2022.9810436

  8. IBM: IBM Quantum Composer (2021). https://quantum-computing.ibm.com/composer. Accessed 30 Apr 2021

  9. Lin, F., Cohen, W.W.: Power iteration clustering. In: Proceedings of the 27th International Conference on Machine Learning, pp. 655–662 (2010)

  10. Li, H., Jiang, N., Wang, Z., Wang, J., Zhou, R.: Quantum matrix multiplier. Int. J. Theor. Phys. 60, 2037–2048 (2021). https://doi.org/10.1007/s10773-021-04816-x

    Article  MathSciNet  Google Scholar 

  11. Britt, B.C.: Modeling viral diffusion using quantum computational network simulation. Quantum Eng. 2(1) (2020). https://doi.org/10.1002/que2.29

  12. Daskin, A.: The Quantum Version of the Shifted Power Method and its Application in Quadratic Binary Optimization. Preprint at https://arxiv.org/pdf/1809.01378.pdf

  13. Grzesiak, N., Blümel, R., Wright, K., Beck, K.M., Pisenti, N.C., Li, M., Chaplin, V., Amini, J.M., Debnath, S., Chen, J.-S., Nam, Y.: Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer. Nat. Commun. 11 (2020). https://doi.org/10.1038/s41467-020-16790-9

  14. Daskin, A.: Combinatorial optimization through variational quantum power method. Quant. Inf. Process. 20, 336 (2021). https://doi.org/10.1007/s11128-021-03283-x

    Article  ADS  MathSciNet  Google Scholar 

  15. Dunbar, R.I.M.: Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22(6), 469–493 (1993). https://doi.org/10.1016/0047-2484(92)90081-J

    Article  Google Scholar 

  16. Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature 432, 602–605 (2004). https://doi.org/10.1038/nature03074

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Qiskit contributors: Qiskit: An Open-Source Framework for Quantum Computing (2023). https://doi.org/10.5281/zenodo.2573505

  18. Parlett, B.N.: The Rayleigh quotient iteration and some generalizations for nonnormal matrices. Math. Comput. 28(127), 679–693 (1974). https://doi.org/10.1090/S0025-5718-1974-0405823-3

    Article  MathSciNet  Google Scholar 

  19. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue program. Q. Appl. Math. 9, 17–29 (1951). https://doi.org/10.1090/qam/42792

    Article  MathSciNet  Google Scholar 

  20. Parlett, B.N., Simon, H., Stringer, L.M.: On estimating the largest eigenvalue with the Lanczos algorithm. Math. Comput. 38(157), 153–165 (1982). https://doi.org/10.2307/2007471

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Britt.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britt, B.C. Quantum power iteration to efficiently obtain the dominant eigenvector from diagonalizable nonnegative matrices. Quantum Inf Process 23, 36 (2024). https://doi.org/10.1007/s11128-024-04259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04259-3

Keywords

Navigation