Skip to main content
Log in

An efficient quantum algorithm for preparation of uniform quantum superposition states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum state preparation involving a uniform superposition over a non-empty subset of n-qubit computational basis states is an important and challenging step in many quantum computation algorithms and applications. In this work, we address the problem of preparation of a uniform superposition state of the form \(\left| {\Psi }\right\rangle = \frac{1}{\sqrt{M}}\sum _{j = 0}^{M - 1} \left| {j}\right\rangle \), where M denotes the number of distinct states in the superposition state and \(2 \le M \le 2^n\). We show that the superposition state \(\left| {\Psi }\right\rangle \) can be efficiently prepared, using a deterministic approach, with a gate complexity and circuit depth of only \(O(\log _2~M)\) for all M. This demonstrates an exponential reduction in gate complexity in comparison with other existing deterministic approaches in the literature for the general case of this problem. Another advantage of the proposed approach is that it requires only \(n=\lceil \log _2~M\rceil \) qubits. Furthermore, neither ancilla qubits nor any quantum gates with multiple controls are needed in our approach for creating the uniform superposition state \(\left| {\Psi }\right\rangle \). It is also shown that a broad class of nonuniform superposition states that involve a mixture of uniform superposition states can also be efficiently created with the same circuit configuration that is used for creating the uniform superposition state \(\left| {\Psi }\right\rangle \) described earlier, but with modified parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press, London (2014)

    Google Scholar 

  3. Kieferová, M., Scherer, A., Berry, D.W.: Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series. Phys. Rev. A 99(4), 042314 (2019)

    Article  ADS  Google Scholar 

  4. Low, G.H., Chuang, I.L.: Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118(1), 010501 (2017)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  5. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114(9), 090502 (2015)

    Article  ADS  PubMed  Google Scholar 

  6. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017)

    Article  MathSciNet  Google Scholar 

  7. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  PubMed  Google Scholar 

  8. Childs, A.M., Liu, J.-P.: Quantum spectral methods for differential equations. Commun. Math. Phys. 375(2), 1427–1457 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Shukla, A., Vedula, P.: A hybrid classical-quantum algorithm for solution of nonlinear ordinary differential equations. Appl. Math. Comput. 442, 127708 (2023)

    MathSciNet  Google Scholar 

  10. Shukla, A., Vedula, P.: A hybrid classical-quantum algorithm for digital image processing. Quantum Inf. Process. 22(3), 19 (2022)

    MathSciNet  Google Scholar 

  11. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  12. Plesch, M., Brukner, Č: Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83(3), 032302 (2011)

    Article  ADS  Google Scholar 

  13. Shende, V.V., Markov, I.L.: Quantum circuits for incompletely specified two-qubit operators. arXiv preprint arXiv:quant-ph/0401162 (2004)

  14. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Transformation of quantum states using uniformly controlled rotations. Quantum Inf. Comput. 5(6), 467–473 (2005)

    MathSciNet  Google Scholar 

  15. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 439(1907), 553–558 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, pp. 11–20 (1993)

  17. Shukla, A., Vedula, P.: A generalization of Bernstein–Vazirani algorithm with multiple secret keys and a probabilistic oracle. Quantum Inf. Process. 22(244), 18 (2023)

    MathSciNet  Google Scholar 

  18. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Shukla, A., Vedula, P.: Trajectory optimization using quantum computing. J. Global Optim. 75(1), 199–225 (2019)

    Article  MathSciNet  Google Scholar 

  20. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  Google Scholar 

  21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation (2002)

  23. Ben-Or, M., Hassidim, A.: Fast quantum Byzantine agreement. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 481–485 (2005)

  24. Gleinig, N., Hoefler, T.: An efficient algorithm for sparse quantum state preparation. In: 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, pp. 433–438 (2021)

  25. Mozafari, F., Riener, H., Soeken, M., De Micheli, G.: Efficient Boolean methods for preparing uniform quantum states. IEEE Trans. Quantum Eng. 2, 1–12 (2021)

    Article  Google Scholar 

  26. Qiskit contributors: Qiskit: An open-source framework for quantum computing (2023)

  27. Sanders, Y.R., Berry, D.W., Costa, P.C.S., Tessler, L.W., Wiebe, N., Gidney, C., Neven, H., Babbush, R.: Compilation of fault-tolerant quantum heuristics for combinatorial optimization. PRX Quantum 1(2), 020312 (2020)

    Article  Google Scholar 

  28. Babbush, R., Gidney, C., Berry, D.W., Wiebe, N., McClean, J., Paler, A., Fowler, A., Neven, H.: Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8(4), 041015 (2018)

    CAS  Google Scholar 

  29. Fischer, L.E., Chiesa, A., Tacchino, F., Egger, D.J., Carretta, S., Tavernelli, I.: Universal qudit gate synthesis for transmons. PRX Quantum 4(3), 030327 (2023)

    Article  ADS  Google Scholar 

  30. Hua, F., Wang, M., Li, G., Peng, B., Liu, C., Zheng, M., Stein, S., Ding, Y., Zhang, E.Z., Humble, T.S., et al.: QASMTrans: A QASM based Quantum Transpiler Framework for NISQ Devices. arXiv preprint arXiv:2308.07581 (2023)

  31. Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for NISQ-era quantum devices. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1001–1014 (2019)

  32. Younis, E., Iancu, C.: Quantum circuit optimization and transpilation via parameterized circuit instantiation. In: 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, pp. 465–475 (2022)

  33. Weaver, J.L., Harkins, F.J.: Qiskit Pocket Guide. O’Reilly Media, Sebastopol (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Shukla.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A sample source code for implementation of our proposed Algorithm 1 for creation of the uniform superposition state \(\frac{1}{\sqrt{M}} \, \sum _{j=0}^{M-1} \, \left| {j}\right\rangle \) on Qiskit platform is presented below.

figure b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Vedula, P. An efficient quantum algorithm for preparation of uniform quantum superposition states. Quantum Inf Process 23, 38 (2024). https://doi.org/10.1007/s11128-024-04258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04258-4

Keywords

Navigation