Skip to main content
Log in

End-to-end entanglement establishment with lower latency in quantum networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider to solve the problem of reducing the end-to-end quantum entanglement establishment latency in quantum networks. In some existing schemes, “doubling” entanglement swapping (ES) method is usually utilized in a nested quantum repeater structure, while we investigate parallel-measurement techniques. We propose a protocol for end-to-end entanglement establishment in a quantum network where heterogeneous Bell pairs are previously shared on physical links. The protocol is proven to be feasible theoretically in a generalized scenario with multiple quantum repeater nodes. A general decision mechanism is developed for the destination node to read out the state of end-to-end quantum entanglement locally based on knowledge of the received measurement outcomes and entangled links information. Numerical evaluation shows that our protocol outperforms the “doubling” ES scheme regarding to the end-to-end entanglement establishment latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  4. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165–171 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Kómár, P.: A quantum network of clocks. Nat. Phys. 10, 582–587 (2014)

    Article  Google Scholar 

  6. Denchev, V.S., Pandurangan, G.: Distributed quantum computing: a new frontier in distributed systems or science fiction? ACM SIGACT News 39, 77–95 (2008)

    Article  Google Scholar 

  7. Beals, R., Brierley, S., Gray, O.: Efficient distributed quantum computing. Proc. R. Soc. A 469, 20120686 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Nickerson, N.H., Fitzsimons, J.F., Benjamin, S.C.: Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014)

    Google Scholar 

  9. Gottesman, D., Jennewin, T., Croke, S.: Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012)

    Article  ADS  PubMed  Google Scholar 

  10. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009)

  11. Zhang, X., Luo, W., Zeng, G., et al.: A hybrid universal blind quantum computation. Inform. Sci. 498, 135–143 (2019)

    Article  MathSciNet  Google Scholar 

  12. Hensen, B.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers. Nature 526, 682–686 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Pompili, M.S., Hermans, L.N., Vermeulen, R.F.L., Tiggelman, M.J.: Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Briegel, H.J., Dür, W., Cirac, J.I., Zollor, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Duan, L.M., Lukin, M.D., Cirac, J.I., et al.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Collins, O.A., Jenkins, S.D., Kuzmich, A., et al.: Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Jiang, L., Taylor, J.M., Nemoto, K., et al.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)

    Article  ADS  Google Scholar 

  18. Meter, R.V., Ladd, T.D., Munro, W., et al.: System design for a long-line quantum repeater. IEEE/ACM Trans. Netw. 17, 1002–1013 (2009)

    Article  Google Scholar 

  19. Azuma, K., Tamaki, K., Lo, H.K., et al.: All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Borregaard, J., Kómár, P., Kessler, E.M., et al.: Long-distance entanglement distribution using individual atoms in optical cavities. Phys. Rev. A 92, 012307 (2015)

    Article  ADS  Google Scholar 

  21. Guha, S., Krovi, H., Fuchs, C.A., et al.: Rate-loss analysis of an efficient quantum repeater architecture. Phys. Rev. A 92, 022357 (2015)

    Article  ADS  Google Scholar 

  22. Borregaard, J., Zugenmaier, M., Petersen, J., et al.: Scalable photonic network architecture based on motional averaging in room temperature gas. Nat. Commun. 7, 11356 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buterakos, D., Barnes, E., Economou, S.E.: Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys. Rev. X 7, 041023 (2017)

    Google Scholar 

  24. Pant, M., Krovi, H., Englund, D., et al.: Rate-distance tradeoff and resource costs for all-optical quantum repeaters. Phys. Rev. A 95, 012304 (2017)

    Article  ADS  Google Scholar 

  25. Borregaard, J., Sørensen, A.S., Lodahl, P.: Quantum networks with deterministic spin-photon interfaces. Adv. Quantum Technol. 2, 1800091 (2019)

    Article  Google Scholar 

  26. Santra, S., Jiang, L., Malinovsky, V.S.: Quantum repeater architecture with hierarchically optimized memory buffer times. Quantum Sci. Technol. 4, 025010 (2019)

    Article  ADS  Google Scholar 

  27. Sangouard, N., Simon, C., Riedmattern, H.D., et al.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  28. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100 (1999)

  29. Awang, A., Husain, K., Kamel, K., et al.: Routing in vehicular ad-hoc Networks: a survey on single- and cross-layer design technologies, and perspectives. IEEE Access 5, 9497–9517 (2017)

    Article  Google Scholar 

  30. Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)

    Article  ADS  PubMed  Google Scholar 

  31. Meter, R.V., Satoh, T., Ladd, T.D., et al.: Path selection for quantum repeater networks. Netw. Sci. 3, 82–95 (2013)

    Article  Google Scholar 

  32. Caleffi, M.: Optimal routing for quantum networks. IEEE Access 5, 22299–22312 (2017)

    Article  Google Scholar 

  33. Pant, M., Krovi, H., Towsley, D., et al.: Routing entanglement in the quantum internet. npj Quantum Inf. 5, 25 (2019)

    Article  ADS  Google Scholar 

  34. Shi S., Qian, C.: Concurrent entanglement routing for quantum networks: model and designs. In: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), pp. 62–75 (2020)

  35. Chakraborty, K., Elkouss, D., Rijsman, B., et al.: Entanglement distribution in a quantum network: a multicommodity flow-based approach. IEEE Trans. Quantum Eng. 1, 1–21 (2020)

    Article  Google Scholar 

  36. Ghaderibaneh, M., Zhan, C., Gupta, H., et al.: Efficient quantum network communication using optimized entanglement-swapping trees. IEEE Trans. Quantum Eng. 3, 1–20 (2022)

    Article  Google Scholar 

  37. Mannalath, V., Pathak, A.: Multiparty entanglement routing in quantum networks. Phys. Rev. A 108, 062614 (2023)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Tran Phuong Thao and Rie Shigetomi Yamaguchi from The University of Tokyo for valuable discussions during this investigation. This work was supported in part by the Ministry of Science and Technology of the People’s Republic of China Project (No. 2021ZD0301300) and the China Telecom Corporation Limited Project (No. T-2023-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Zhao, Q., Dou, T. et al. End-to-end entanglement establishment with lower latency in quantum networks. Quantum Inf Process 23, 33 (2024). https://doi.org/10.1007/s11128-023-04241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04241-5

Keywords

Navigation