Skip to main content
Log in

Discussion on the initial states of controlled bidirectional quantum secure direct communication

  • Comment
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In many communication scenarios, it is necessary to involve a third party for control and supervision. In the context of controlled bidirectional quantum secure direct communication (CBQSDC) protocols, the transmission of secret messages between two legitimate users is only permitted with the explicit permission of a controller. To address the issue of controlled communication, a CBQSDC protocol (CLYH2015) utilizing Bell states was proposed in the paper (Quant Inf Process 14, 3515–3522, 2015). Bell states have been widely recognized for their significance in the field of quantum secure direct communication. In a subsequent study published in (Quant Inf Process 16, 147, 2017), the research examined whether CLYH2015 protocol strictly requires the initial states to be Bell states. The conclusion drawn from this investigation is that CLYH2015 protocol working properly necessitates the use of Bell states as initial states. To explore alternative possibilities for the initial states in CLYH2015 protocol, a class of CBQSDC protocols employing the generalized Bell states (GBell states), \(a\arrowvert 00\rangle + b\arrowvert 11\rangle \), \({\bar{b}}\arrowvert 00\rangle -{\bar{a}}\arrowvert 11\rangle \), \(a\arrowvert 01\rangle + b\arrowvert 10\rangle \), and \({\bar{b}}\arrowvert 01\rangle -{\bar{a}}\arrowvert 10\rangle \), are designed where a and b are complex numbers with \(|a|=|b|=\frac{1}{\sqrt{2}}\), \({\bar{a}}\) and \({\bar{b}}\) the conjugate complex numbers of a and b, respectively. The class of designed CBQSDC protocols demonstrates several favorable properties, including resistance against information leakage, intercept-and-resend attacks, measure-resend attacks, as well as robustness against collective attacks. In addition, the unconditional security of the class of designed protocols is proved. Finally, to show the advantages of the class of designed protocols, they are compared with some with some previous closely associated protocols. Interestingly, it is worth noting that the Bell states can be considered a special case of the GBell states when both a and b are real numbers. Consequently, CLYH2015 protocol can be regarded as a particular instance of the designed CBQSDC protocols. This insight implies that the initial states in CLYH2015 protocol can be extended to include the GBell states, rather than being limited solely to the Bell states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding authors.

References

  1. Bennett,C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, Bangalore India (1984)

  2. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    ADS  Google Scholar 

  3. Gao, Z., Li, T., Li, Z.: Deterministic measurement-device-independent quantum secret sharing. Sci. China Phys. Mech. Astron. 63(12), 120311 (2020)

    ADS  Google Scholar 

  4. Dutta, A., Pathak, A.: Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quant. Inf. Process. 22(1), 13 (2022)

    MathSciNet  ADS  Google Scholar 

  5. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  6. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    ADS  Google Scholar 

  7. Liu, X., Li, Z., Luo, D., Huang, C., Ma, D., Geng, M., Wang, J., Zhang, Z., Wei, K.: Practical decoy-state quantum secure direct communication. Sci. China Phys. Mech. Astron. 64(12), 120311 (2021)

    ADS  Google Scholar 

  8. Park, J., Kim, B., Heo, J.: Statistical fluctuation analysis for decoy-state quantum secure direct communication. Quantum Inf. Process. 22(2), 112 (2023)

    MathSciNet  ADS  Google Scholar 

  9. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  10. Li, T., Long, G.-L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys. 22(6), 063017 (2020)

    MathSciNet  ADS  Google Scholar 

  11. Sheng, Y.-B., Zhou, L., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Google Scholar 

  12. Yang, C.-W., Lin, J., Wang, K.-L., Tsai, C.-W.: Cryptanalysis and improvement of a controlled quantum secure direct communication with authentication protocol based on five-particle cluster state. Quant. Inf. Process. 22(5), 196 (2023)

    MathSciNet  ADS  Google Scholar 

  13. Guerra, A.G.D.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quant. Inf. Process. 15, 4747–4758 (2016)

  14. Chai, G., Cao, Z., Liu, W., Zhang, M., Liang, K., Peng, J.: Novel continuous-variable quantum secure direct communication and its security analysis. Laser Phys. Lett. 16(9), 095207 (2019)

    ADS  Google Scholar 

  15. Srikara, S., Chandrashekar, C.: Quantum direct communication protocols using discrete-time quantum walk. Quantum Inf. Process. 19, 1–15 (2020)

    MathSciNet  Google Scholar 

  16. Cao, Z., Wang, L., Liang, K., Chai, G., Peng, J.: Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl. 16(2), 024012 (2021)

    ADS  Google Scholar 

  17. Zhou, L., Sheng, Y.-B., Long, G.-L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)

    Google Scholar 

  18. Zhou, L., Sheng, Y.-B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(5), 250311 (2022)

    MathSciNet  ADS  Google Scholar 

  19. Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19(1), 014036 (2023)

    ADS  Google Scholar 

  20. Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63(3), 1–6 (2020)

    ADS  Google Scholar 

  21. Ying, J.-W., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B 31(12), 120303 (2022)

    ADS  Google Scholar 

  22. Das, N., Paul, G.: Measurement-device-independent quantum secure direct communication with user authentication. Quantum Inf. Process. 21(7), 260 (2022)

    MathSciNet  ADS  Google Scholar 

  23. Hong, Y.-P., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent three-party quantum secure direct communication. Quantum Inf. Process. 22(2), 111 (2023)

    MathSciNet  ADS  Google Scholar 

  24. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    MathSciNet  ADS  Google Scholar 

  25. Man, Z.-X., Zhang, Z.-J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22(1), 22 (2005)

    ADS  Google Scholar 

  26. Xia, Y., Fu, C.-B., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Quantum dialogue by using the GHZ state. arXiv preprint arXiv:quant-ph/0601127 (2006)

  27. Man, Z.-X., Xia, Y.-J., Zhang, Z.-J.: Secure deterministic bidirectional communication without entanglement. Int. J. Quantum Inf. 4(04), 739–746 (2006)

    Google Scholar 

  28. Yang, Y.-G., Wen, Q.-Y.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. G Phys. Mech. Astron. 50(5), 558–562 (2007)

    ADS  Google Scholar 

  29. Tan, Y.-G., Cai, Q.-Y.: Classical correlation in quantum dialogue. Int. J. Quant. Inf. 6(02), 325–329 (2008)

    Google Scholar 

  30. Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G Phys. Mech. Astron. 51(5), 559–566 (2008)

    ADS  Google Scholar 

  31. Dong, L., Xiu, X.-M., Gao, Y.-J., Chi, F.: Quantum dialogue protocol using a class of three-photon W states. Commun. Theor. Phys. 52(5), 853 (2009)

    ADS  Google Scholar 

  32. Luo, Y.-P., Lin, C.-Y., Hwang, T.: Efficient quantum dialogue using single photons. Quant. Inf. Process. 13, 2451–2461 (2014)

    MathSciNet  ADS  Google Scholar 

  33. Chang, Y., Zhang, S.-B., Yan, L.-L.: A bidirectional quantum secure direct communication protocol based on five-particle cluster state. Chin. Phys. Lett. 30(9), 090301 (2013)

    ADS  Google Scholar 

  34. Ye, T.-Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quant. Inf. Process. 14, 3499–3514 (2015)

    MathSciNet  ADS  Google Scholar 

  35. Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quant. Inf. Process. 16, 1–11 (2017)

    MathSciNet  Google Scholar 

  36. Chen, Y., Zou, X., Wang, X., Liu, J., Rong, Z., Huang, Z., Zheng, S., Liang, X., Wu, J.: Two intercept-and-resend attacks on a bidirectional quantum secure direct communication and its improvement. Quant. Inf. Process. 22, 346 (2023)

    MathSciNet  ADS  Google Scholar 

  37. Srikanth, A., Balakrishnan, S.: Controller-independent quantum bidirectional communication using non-maximally entangled states. Quant. Inf. Process. 19, 1–11 (2020)

    MathSciNet  Google Scholar 

  38. Ramachandran, M., Balakrishnan, S.: Effect of noise in the quantum bidirectional direct communication protocol using non-maximally entangled states. Int. J. Theor. Phys. 61(5), 127 (2022)

    MathSciNet  Google Scholar 

  39. Qi, J.-M., Xu, G., Chen, X.-B., Wang, T.-Y., Cai, X.-Q., Yang, Y.-X.: Two authenticated quantum dialogue protocols based on three-particle entangled states. Quant. Inf. Process. 17, 1–19 (2018)

    MathSciNet  Google Scholar 

  40. Li, W., Zha, X.-W., Yu, Y.: Secure quantum dialogue protocol based on four-qubit cluster state. Int. J. Theor. Phys. 57, 371–380 (2018)

    MathSciNet  Google Scholar 

  41. Liu, Z., Chen, H.: Analyzing and improving the secure quantum dialogue protocol based on four-qubit cluster state. Int. J. Theor. Phys. 59, 2120–2126 (2020)

    MathSciNet  Google Scholar 

  42. Chauhan, S., Gupta, N.: Bidirectional quantum secure direct communication using dense coding of four qubit cluster states. J. Sci. Res. 14(1), 179–187 (2022)

    Google Scholar 

  43. Man, Z.-X., Xia, Y.-J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680 (2006)

    ADS  Google Scholar 

  44. Ye, T.-Y., Jiang, L.-Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    ADS  Google Scholar 

  45. Liu, Z.-H., Chen, H.-W.: Comment on “Improvement of controlled bidirectional quantum direct communication using a GHZ state”[Chin. Phys. Lett. 30 (2013) 040305]. Chinese Phys. Lett. 30(7), 079901 (2013)

  46. Chang, C.-H., Luo, Y.-P., Yang, C.-W., Hwang, T.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quant. Inf. Process. 14, 3515–3522 (2015)

    MathSciNet  ADS  Google Scholar 

  47. Pan, H.-M.: Controlled bidirectional quantum secure direct communication with six-qubit entangled states. Int. J. Theor. Phys. 60(8), 2943–2950 (2021)

    MathSciNet  Google Scholar 

  48. Zou, X., Wang, X., Rong, Z., Huang, Z., Liu, J., Chen, Y.: Comment on “Controlled bidirectional quantum secure direct communication with six-qubit entangled states.” Int. J. Theoret. Phys. 62(2), 43 (2023)

  49. Hu, J.-Y., Yu, B., Jing, M.-Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., Long, G.-L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)

  50. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Google Scholar 

  51. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  52. Sun, Z., Song, L., Huang, Q., Yin, L., Long, G., Lu, J., Hanzo, L.: Toward practical quantum secure direct communication: A quantum-memory-free protocol and code design. IEEE Trans. Commun. 68(9), 5778–5792 (2020)

    Google Scholar 

  53. Pan, D., Lin, Z., Wu, J., Zhang, H., Sun, Z., Ruan, D., Yin, L., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8(9), 1522–1531 (2020)

    Google Scholar 

  54. Qi, Z., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10(1), 183 (2021)

    ADS  Google Scholar 

  55. Zhang, H., Sun, Z., Qi, R., Yin, L., Long, G.-L., Lu, J.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11(1), 83 (2022)

    ADS  Google Scholar 

  56. Liu, X., Luo, D., Lin, G., Chen, Z., Huang, C., Li, S., Zhang, C., Zhang, Z., Wei, K.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 65(12), 120311 (2022)

    ADS  Google Scholar 

  57. Liu, J., Zou, X., Wang, X., Chen, Y., Rong, Z., Huang, Z., Zheng, S., Liang, X., Wu, J.: A class of general maximum entangled states and its applications in measurement-device-independent quantum secure direct communication. To appear

  58. Yan, P.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Feasible measurement-based entanglement purification in linear optics. Opt. Express 29(6), 9363–9384 (2021)

    ADS  Google Scholar 

  59. Yan, P.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Feasible time-bin entanglement purification based on sum-frequency generation. Opt. Express 29(2), 571–583 (2021)

    ADS  Google Scholar 

  60. Yan, P.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-based logical qubit entanglement purification. Phys. Rev. A 105(6), 062418 (2022)

    MathSciNet  ADS  Google Scholar 

  61. Yan, P.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron. 66(5), 250301 (2023)

    ADS  Google Scholar 

  62. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    MathSciNet  Google Scholar 

  63. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    MathSciNet  Google Scholar 

  64. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.-M.: Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory 53(8), 2933–2945 (2007)

    MathSciNet  Google Scholar 

  65. Tyagi, H., Vardy, A.: Universal hashing for information-theoretic security. Proc. IEEE 103(10), 1781–1795 (2015)

    Google Scholar 

  66. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72(1), 012332 (2005)

    ADS  Google Scholar 

  67. Wu, J., Lin, Z., Yin, L., Long, G.-L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quant. Eng. 1(4), 26 (2019)

    Google Scholar 

  68. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    ADS  Google Scholar 

  69. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quant. Inf. Process. 14, 2195–2210 (2015)

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Joint Research and Development Fund of Wuyi University, Hong Kong and Macao (No. 2021WGALH16), the National Natural Science Foundations of China (Nos. 61871205 and 11874312), the Innovation Program for Quantum Science and Technology (No. 2021ZD0302900), the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012623), the Innovation Project of Department of Education of Guangdong Province of China (No. 2017KTSCX180), the Science and Technology Project of Jiangmen City of China (No. 2021030101270004596), and Special Foundation in Key Fields for Universities of Guangdong Province (2023ZDZX4060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfu Zou or Xin Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zou, X., Wang, X. et al. Discussion on the initial states of controlled bidirectional quantum secure direct communication. Quantum Inf Process 22, 426 (2023). https://doi.org/10.1007/s11128-023-04178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04178-9

Keywords

Navigation