Skip to main content
Log in

Decoupling nuclear spins via interaction-induced freezing in nitrogen vacancy centers in diamond

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nitrogen-Vacancy (NV) centers in diamonds provide a room-temperature platform for various emerging quantum technologies, e.g., the long nuclear spin coherence times as potential quantum memory registers. We demonstrate a freezing protocol for an NV center to isolate its intrinsic nuclear spin from a noisy electromagnetic environment. Any initial state of the nuclear spin can be frozen when the hyperfine-coupled electron and nuclear spins are simultaneously driven with unequal Rabi frequencies. Through numerical simulations, we show that our protocol can effectively shield the nuclear spin from strong drive or noise fields. We also observe a clear suppression of quantum correlations in the frozen nuclear spin regime by measuring the quantum discord of the electron–nuclear spin system. These features can be instrumental in extending the storage times of NV nuclear spin-based quantum memories in hybrid quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Simulation data is available upon reasonable request to the authors.

Notes

  1. A slight difference in Figs. 2d and 3b is that the population of states \(|gg \rangle \) and \(|eg \rangle \) in Fig. 2d oscillates between 1 and 0, whereas in 3b, the population of does not reach 0. This is because we are using just one MW field to drive both the transitions \(\{|0,0 \rangle \rightarrow |-1,0 \rangle \}\) and \(\{|0,+1 \rangle \rightarrow |-1,+1 \rangle \}\). The applied MW has frequency midway between these two transitions to ensure both transitions are driven with the same Rabi frequency. Using a detuned Rabi drive leads to a drop in the change of population, and there cannot be a perfect population transfer between \(\{|0,0 \rangle , |-1,0 \rangle \}\) and \(\{|0,+1 \rangle ,|-1,+1 \rangle \}\). The imperfect driving due to a detuned drive field, however, still gives the interaction-induced freezing signature, which was the main motive of this protocol.

References

  1. Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528(1), 1–45 (2013). https://doi.org/10.1016/j.physrep.2013.02.001

    Article  ADS  Google Scholar 

  2. Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8(5), 383–387 (2009). https://doi.org/10.1038/nmat2420

    Article  ADS  Google Scholar 

  3. Degen, C.L.: Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92(24), 243 (2008). https://doi.org/10.1063/1.2943282

    Article  Google Scholar 

  4. Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Dutt, M.V.G., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., Lukin, M.D.: Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455(7213), 644–647 (2008). https://doi.org/10.1038/nature07279

    Article  ADS  Google Scholar 

  5. Hall, L.T., Hill, C.D., Cole, J.H., Stadler, B., Caruso, F., Mulvaney, P., Wrachtrup, J., Hollenberg, L.C.L.: Monitoring ion-channel function in real time through quantum decoherence. Proc. Natl. Acad. Sci. 107(44), 18777–18782 (2010). https://doi.org/10.1073/pnas.1002562107

    Article  ADS  Google Scholar 

  6. McGuinness, L.P., Yan, Y., Stacey, A., Simpson, D.A., Hall, L.T., Maclaurin, D., Prawer, S., Mulvaney, P., Wrachtrup, J., Caruso, F., Scholten, R.E., Hollenberg, L.C.L.: Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6(6), 358–363 (2011). https://doi.org/10.1038/nnano.2011.64

    Article  ADS  Google Scholar 

  7. Wrachtrup, J., Jelezko, F.: Processing quantum information in diamond. J. Phys. Condens. Matter 18(21), S807–S824 (2006). https://doi.org/10.1088/0953-8984/18/21/s08

    Article  ADS  Google Scholar 

  8. Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320(5881), 1326–1329 (2008). https://doi.org/10.1126/science.1157233

    Article  ADS  Google Scholar 

  9. Jelezko, F., Gaebel, T., Popa, I., Gruber, A., Wrachtrup, J.: Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004). https://doi.org/10.1103/PhysRevLett.92.076401

    Article  ADS  Google Scholar 

  10. Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Gigahertz dynamics of a strongly driven single quantum spin. Science 326(5959), 1520–1522 (2009). https://doi.org/10.1126/science.1181193

    Article  ADS  Google Scholar 

  11. Pham, L.M., Bar-Gill, N., Belthangady, C., Le Sage, D., Cappellaro, P., Lukin, M.D., Yacoby, A., Walsworth, R.L.: Enhanced solid-state multispin metrology using dynamical decoupling. Phys. Rev. B 86, 045214 (2012). https://doi.org/10.1103/PhysRevB.86.045214

    Article  ADS  Google Scholar 

  12. Childress, L., Dutt, M.V.G., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314(5797), 281–285 (2006). https://doi.org/10.1126/science.1131871

    Article  ADS  Google Scholar 

  13. Gaebel, T., Domhan, M., Popa, I., Wittmann, C., Neumann, P., Jelezko, F., Rabeau, J.R., Stavrias, N., Greentree, A.D., Prawer, S., Meijer, J., Twamley, J., Hemmer, P.R., Wrachtrup, J.: Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2(6), 408–413 (2006). https://doi.org/10.1038/nphys318

    Article  Google Scholar 

  14. Hanson, R., Mendoza, F.M., Epstein, R.J., Awschalom, D.D.: Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006). https://doi.org/10.1103/PhysRevLett.97.087601

    Article  ADS  Google Scholar 

  15. Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004). https://doi.org/10.1103/PhysRevLett.93.130501

    Article  ADS  Google Scholar 

  16. Neumann, P., Beck, J., Steiner, M., Rempp, F., Fedder, H., Hemmer, P.R., Wrachtrup, J., Jelezko, F.: Single-shot readout of a single nuclear spin. Science 329(5991), 542–544 (2010). https://doi.org/10.1126/science.1189075

    Article  ADS  Google Scholar 

  17. Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010). https://doi.org/10.1103/RevModPhys.82.2313

    Article  ADS  Google Scholar 

  18. Löw, R., Weimer, H., Nipper, J., Balewski, J.B., Butscher, B., Büchler, H.P., Pfau, T.: An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B At. Mol. Opt. Phys. 45(11), 113001 (2012). https://doi.org/10.1088/0953-4075/45/11/113001

    Article  ADS  Google Scholar 

  19. Srivastava, V., Niranjan, A., Nath, R.: Dynamics and quantum correlations in two independently driven Rydberg atoms with distinct laser fields. J. Phys. B At. Mol. Opt. Phys. 52(18), 184001 (2019). https://doi.org/10.1088/1361-6455/ab32a2

    Article  ADS  Google Scholar 

  20. Burgarth, D., Maruyama, K., Murphy, M., Montangero, S., Calarco, T., Nori, F., Plenio, M.B.: Scalable quantum computation via local control of only two qubits. Phys. Rev. A 81, 040303 (2010). https://doi.org/10.1103/PhysRevA.81.040303

    Article  ADS  MATH  Google Scholar 

  21. Sangtawesin, S., Brundage, T.O., Petta, J.R.: Fast room-temperature phase gate on a single nuclear spin in diamond. Phys. Rev. Lett. 113, 020506 (2014). https://doi.org/10.1103/PhysRevLett.113.020506

    Article  ADS  Google Scholar 

  22. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899–6905 (2001). https://doi.org/10.1088/0305-4470/34/35/315

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001). https://doi.org/10.1103/PhysRevLett.88.017901

    Article  ADS  MATH  Google Scholar 

  24. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008). https://doi.org/10.1103/PhysRevA.77.042303

    Article  ADS  Google Scholar 

  25. Jiang, L., Hodges, J.S., Maze, J.R., Maurer, P., Taylor, J.M., Cory, D.G., Hemmer, P.R., Walsworth, R.L., Yacoby, A., Zibrov, A.S., Lukin, M.D.: Repetitive readout of a single electronic spin via quantum logic with nuclear spin Ancillae. Science 326(5950), 267–272 (2009). https://doi.org/10.1126/science.1176496

    Article  ADS  Google Scholar 

  26. Dutt, M.V.G., Childress, L., Jiang, L., Togan, E., Maze, J., Jelezko, F., Zibrov, A.S., Hemmer, P.R., Lukin, M.D.: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316(5829), 1312–1316 (2007). https://doi.org/10.1126/science.1139831

    Article  Google Scholar 

  27. Fuchs, G.D., Burkard, G., Klimov, P.V., Awschalom, D.D.: A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 7(10), 789–793 (2011). https://doi.org/10.1038/nphys2026

    Article  Google Scholar 

  28. Bradley, C.E., Randall, J., Abobeih, M.H., Berrevoets, R.C., Degen, M.J., Bakker, M.A., Markham, M., Twitchen, D.J., Taminiau, T.H.: A ten-qubits solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019). https://doi.org/10.1103/PhysRevX.9.031045

    Article  Google Scholar 

  29. Manzano, D.: A short introduction to the Lindblad master equation. AIP Adv. 10(2), 025106 (2020). https://doi.org/10.1063/1.5115323

    Article  ADS  Google Scholar 

  30. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996). https://doi.org/10.1103/PhysRevA.54.3824

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996). https://doi.org/10.1103/PhysRevA.53.2046

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.S. acknowledges financial support from IIT Bombay seed Grant Number 17IRCCSG009, DST Inspire Faculty Fellowship-DST/INSPIRE/04/2016/002284 and DST Quest Grant DST/ICPS/QuST/Theme-2/2019/Q-58. S.P. acknowledges financial support from SERB-DST, India via Grant No. SRG/2019/001419, and in the final stages of writing by Grant No. CRG/2021/003024. The authors acknowledge useful discussions with H. S. Dhar, A. Mahajan, and B. Muralidharan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Saha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kejriwal, A., Shishir, D., Pujari, S. et al. Decoupling nuclear spins via interaction-induced freezing in nitrogen vacancy centers in diamond. Quantum Inf Process 22, 289 (2023). https://doi.org/10.1007/s11128-023-04040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04040-y

Keywords

Navigation