Skip to main content
Log in

Multipartite strongly symmetric states and applications to geometric entanglement and classicality

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Multipartite quantum resources, such as entanglement and coherence, have long been a question of great interest in quantum information science. In this literature, we introduce the concept of multipartite strongly symmetric states that their representation tensors are strongly symmetric tensor. The dimension of strongly symmetric subspace is discussed, and show that is less than the dimension of symmetric subspace. We present some upper bound for the geometric measure of entanglement of strongly symmetric states, which are tighter than the bounds in N-qubit system. On the other hand, we consider the classicality of spin states in strongly symmetric situation, which is equivalent to the positive semidefiniteness of strongly symmetric representation tensor. Some sufficient conditions for classicality (separability) in strongly symmetric case are proposed, and these methods have a larger detection range than the smallest eigenvalue method. In addition, we also present some theoretical upper bounds for quantumness of strongly symmetric states, which are tighter than existing bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

All data generated or analysed during this study are included in this published article.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Filip, R.: Overlap and entanglement-witness measurements. Phys. Rev. A 65, 062320 (2002)

    Article  ADS  Google Scholar 

  6. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  7. Shimony, A.: Degree of entanglement. Ann. NY. Acad. Sci. 755, 675 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wei, T.-C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A. 68, 042307 (2003)

    Article  ADS  Google Scholar 

  9. Tamaryan, S., Sudbery, A., Tamaryan, L.: Duality and the geometric measure of entanglement of general multiqubit \(w\) states. Phys. Rev. A 81, 052319 (2010)

    Article  ADS  Google Scholar 

  10. Hübener, R., Kleinmann, M., Wei, T.-C., González-Guillén, C., Gühne, O.: Geometric measure of entanglement for symmetric states. Phys. Rev. A 80, 032324 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Perelomov, A.M.: Coherent states for arbitrary lie group. Commun. Math. Phys. 26, 222–236 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  15. Giraud, O., Braun, P., Braun, D.: Classicality of spin states. Phys. Rev. A 78, 042112 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Xiong, L., Liu, J., Qi, Q.: The geometric measure of entanglement of multipartite states and the Z-eigenvalue of tensors. Quantum. Inf. Process. 21, 102 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bohnet-Waldraff, F., Braun, D., Giraud, O.: Tensor eigenvalues and entanglement of symmetric states. Phys. Rev. A 94, 042324 (2016)

    Article  ADS  Google Scholar 

  18. Xiong, L., Liu, J.: Z-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states. Comput. Appl. Math. 39, 1–11 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiong, L., Liu, J.: Further results for Z-eigenvalue localization theorem for higher-order tensors and their applications. Acta Appl. Math. 170, 229–264 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Olivier, G., Petr, B., Daniel, B.: Quantifying quantumness and the quest for Queens of Quantum. New J. Phys. 12(6), 063005 (2010)

    Article  MATH  Google Scholar 

  21. Bohnet-Waldraff, F., Braun, D., Giraud, O.: Quantumness of spin-1 states. Phys. Rev. A. 93, 012104 (2016)

    Article  ADS  Google Scholar 

  22. Martin, J., Giraud, O., Braun, P.A., Braun, D., Bastin, T.: Multiqubit symmetric states with high geometric entanglement. Phys. Rev. A 81, 062347 (2010)

    Article  ADS  Google Scholar 

  23. Eisert, J., Audenaert, K., Plenio, M.B.: Remarks on entanglement measures and non-local state distinguishability. J. Phys. A Math. Gen. 36(20), 5605–5615 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lim, L.: Singular values and eigenvalues of tensors: a variational approach, In: CAMSAP05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 129–132 (2005)

  26. Qi, L., Xu, C., Xu, Y.: Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm. SIAM. J. Matrix. Anal. A 35(4), 1227–1241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Comon, P., Golub, G., Lim, L.-H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM. J. Matrix. Anal. A 30(3), 1254–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jung, E., Hwang, M.-R., Kim, H., Kim, M.-S., Park, D., Son, J.-W., Tamaryan, S.: Reduced state uniquely defines the Groverian measure of the original pure state. Phys. Rev. A 77, 062317 (2008)

    Article  ADS  Google Scholar 

  29. Giraud, O., Braun, D., Baguette, D., Bastin, T., Martin, J.: Tensor representation of spin states. Phys. Rev. Lett. 114, 080401 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research of Sze was supported by a HK RGC grant PolyU 15300121 and a PolyU research grant 4-ZZRN. The HK RGC grant also supported the post-doctoral fellowship of Xiong at the Hong Kong Polytechnic University. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11971413, 12175150) and the Guangdong Basic and Applied Basic Foundation (Grant No.2022A1515011995).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Xiong, Zhanfeng Jiang or Nung-sing Sze.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Qin, Q., Liu, J. et al. Multipartite strongly symmetric states and applications to geometric entanglement and classicality. Quantum Inf Process 22, 291 (2023). https://doi.org/10.1007/s11128-023-04032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04032-y

Keywords

Navigation