Skip to main content
Log in

Entanglement of two quantum dots with dipole–dipole interaction coupled to a cavity in plasmonic waveguide system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate quantum entanglement between two quantum dots (QDs) with dipole–dipole interaction (DDI) in plasmonic waveguide system where a cavity is coupled to the QDs but decoupled from the waveguide. The real-space Hamiltonian and the concurrence are used in describing the composite quantum system and quantifying the entanglement, respectively. We analyze the influence of DDI on the entanglement and propose several effective schemes to achieve high entanglement by modulating the incident frequency, the resonant frequency of the cavity, the QD-cavity coupling strength and so on. Moreover, we demonstrate that coupling between the QDs and the cavity can enhance the entanglement of two QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and material considered in this paper are transparent.

Code availability

Authors have used Mathematica10.0 as software application.

References

  1. Yin, Z.Q., Li, H.W., Yao, Y., Zhang, C.M., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Counterfactual quantum cryptography based on weak coherent states. Phys. Rev. A 86, 022313 (2012)

    Article  ADS  Google Scholar 

  2. Epping, M., Kampermann, H., Macchiavello, C., Bruß, D.: Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 19, 093012 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M. A. Nielsen, Chuang, I. L. : Quantum Computation and Quantum Information,” 10th Anniversary ed. Cambridge: Cambridge University Press (2011).

  4. Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Liu, C., Liao, S.K., Zhou, F., Jiang, Y., Cai, X.D., Xu, P., Pan, G.S., Jia, J.J., Huang, Y.M., Yin, H., Wang, J.Y., Chen, Y.A., Peng, C.Z., Pan, J.W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)

    Article  ADS  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Modern Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Eisert, J.: Entanglement in Quantum Information Theory. PhD Thesis. arXiv:quant-ph/0610253 (2006).

  7. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80(2), 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, G.-Y., Lambert, N., Chou, C.-H., Chen, Y.-N., Nori, F.: Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011)

    Article  ADS  Google Scholar 

  9. Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin-Moreno, L., Tejedor, C., Garcia-Vidal, F.J.: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)

    Article  ADS  Google Scholar 

  10. Chang, D.E., Sørensen, A.S., Hemmer, P.R., Lukin, M.D.: Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    Article  ADS  Google Scholar 

  11. Li, Q., Wei, H., Xu, H.: Resolving single plasmons generated by multiquantum-emitters on a silver nanowire. Nano Lett. 14, 3358–3363 (2014)

    Article  ADS  Google Scholar 

  12. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007)

    Article  ADS  Google Scholar 

  13. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)

    Article  ADS  Google Scholar 

  14. Van Loo, A.F., Fedorov, A., Lalumière, K., Sanders, B.C., Blais, A., Wallraff, A.: Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013)

    Article  ADS  Google Scholar 

  15. Zheng, H., Gauthier, D.J., Baranger, H.U.: Waveguide-qed-based photonic quantum computation. Phys. Rev. Lett. 111, 090502 (2013)

    Article  ADS  Google Scholar 

  16. Dzsotjan, D., Sørensen, A.S., Fleischhauer, M.: Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach. Phys. Rev. B 82, 075427 (2010)

    Article  ADS  Google Scholar 

  17. Andersen, M.L., Stobbe, S., Sørensen, A.S., Lodahl, P.: Strongly modified plasmon-matter interaction with mesoscopic quantum emitters. Nat. Phys. 7, 215–218 (2011)

    Article  Google Scholar 

  18. Quan, Q., Bulu, I., Loncar, M.: Broadband waveguide QED system on a chip. Phys. Rev. A 80, 011810 (2009)

    Article  ADS  Google Scholar 

  19. Kim, N.-C., Ko, M.-C., Wang, Q.-Q.: Single plasmon switching with n quantum dots system coupled to one-dimensional waveguide. Plasmonics 10, 611–615 (2015)

    Article  Google Scholar 

  20. Ko, M.-C., Kim, N.-C., Ho, N.-C., Ryom, J.-S., Hao, Z.-H., Li, J.-B., Wang, Q.-Q.: Influence of the flip-flop interaction on a single plasmon transport in 1D waveguide. Appl. Phys. B 123, 287 (2017)

    Article  ADS  Google Scholar 

  21. Qiu, D.-X., Bai, R., Zhang, C., Xin, L.-F., Zou, X.-Y., Zhang, Y.Q., Jin, X.R., An, C., Zhang, S.: Unidirectional reflectionlessness in a non-Hermitian quantum system of surface plasmon coupled to two plasmonic cavities. Quantum Inf. Process. 18, 28 (2019)

    Article  ADS  MATH  Google Scholar 

  22. Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F.J.: Generation, manipulation, and detection of two-qubit entanglement in waveguide QED. Phys. Rev. A 89, 042328 (2014).

  23. Mirza, I.M., Schotland, J.C.: Multi-qubit entanglement in bidirectional-chiral-waveguide QED. Phys. Rev. A 94, 012302 (2016)

    Article  ADS  Google Scholar 

  24. Jin, X.R., Sun, L., Yang, X., Gao, J.: Quantum entanglement in plasmonic waveguides with near-zero mode indices. Opt. Lett. 38, 4078 (2013)

    Article  ADS  Google Scholar 

  25. Li, Y., Nemilentsau, A., Argyropoulos, C.: Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems. Nanoscale 11, 14635–14647 (2019)

    Article  Google Scholar 

  26. Ko, M.-C., Kim, N.-C., Ryom, J.-S., Ri, S.-R., Li, J.-B.: Entanglement of two distant quantum dots with the flip-flop interaction coupled to plasmonic waveguide. Int. J. Mod. Phys. B 33, 1950235 (2019)

    Article  ADS  MATH  Google Scholar 

  27. Ryom, J.-S., Ko, M.-C., Kim, N.-C., Kim, G.-I., Choe, S.-I., Kim, S.-G.: Entanglement created in three-quantum dot system coupled to plasmonic waveguide. Int. J. Mod. Phys. B 34, 2050190 (2020)

    Article  ADS  MATH  Google Scholar 

  28. Ryom, J.-S., Ko, M.-C., Kim, N.-C., Choe, S.-I., Kim, C.-G., Kim, S.-G.: Pairwise and bipartite entanglements of three non-equally separated quantum dots in plasmonic nanowaveguide system. Plasmonics 16, 1577–1582 (2021)

    Article  Google Scholar 

  29. Walther, H., Varcoe, B.T.H., Englert, B.-G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  30. Bao, X.-X., Guo, G.-F., Tan, L.: Quantum router modulated by the dipole-dipole interaction in a X-shaped coupled cavity array. Euro. Phys. J. D 73, 133 (2019)

    Article  ADS  Google Scholar 

  31. Kim, N.-C., Ko, M.-C.: Switching of a single photon by two λ-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide. Plasmonics 10, 605–610 (2015)

    Article  Google Scholar 

  32. Kim, N.-C., Ko, M.-C., Choe, S.-I., Hao, Z.-H., Zhou, L., Li, J.-B., Im, S.-J., Ko, Y.-H., Jo, C.-G., Wang, Q.-Q.: Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide. Nanotechnology 27, 465703 (2016)

    Article  ADS  Google Scholar 

  33. Kuo, P.-C., Chen, G.-Y., Chen, Y.-N.: Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Sci. Rep. 6, 37766 (2016)

    Article  ADS  Google Scholar 

  34. Cheng, M.-T., Ma, X.-S., Ding, M.-T., Luo, Y.-Q., Zhao, G.-X.: Single-photon transport in one dimensional coupled-resonator waveguide with local and nonlocal coupling to a nanocavity containing a two-level system. Phys. Rev. A 85, 053840 (2012)

    Article  ADS  Google Scholar 

  35. Agarwal, G. S.: Quantum optics.Cambridge: Cambridge University Press (2013).

  36. Yu, X.-Y., Li, J.-H.: The effect of dipole-dipole interactions on the single-photon transmission spectrum. Euro. Phys. J. D 67, 177 (2013)

    Article  ADS  Google Scholar 

  37. Cheng, M.-T., Xu, J., Agarwal, G.S.: Waveguide transport mediated by strong coupling with atoms. Phys. Rev. A 95, 053807 (2017)

    Article  ADS  Google Scholar 

  38. Shen, J.-T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)

    Article  ADS  Google Scholar 

  39. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Program on Key Science Research of Democratic People’s Republic of Korea.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

N-CK supervised the project. He conceived the idea and performed theoretical calculations. J-SR performed theoretical and numerical calculations. He also analyzed the results obtained. M-CK and G-YR checked the correctness of the calculations and contributed to preparation of the manuscript. S-RR and S-IC contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Nam-Chol Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Consent to participate

All authors consent to participate.

Consent to publish

All authors consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryom, JS., Ri, GY., Kim, NC. et al. Entanglement of two quantum dots with dipole–dipole interaction coupled to a cavity in plasmonic waveguide system. Quantum Inf Process 22, 293 (2023). https://doi.org/10.1007/s11128-023-04019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04019-9

Keywords

Navigation