Skip to main content
Log in

Ranking nodes in directed networks via continuous-time quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Four new centrality measures for directed networks based on unitary, continuous-time quantum walks (CTQW) in n dimensions—where n is the number of nodes—are presented, tested and discussed. The main idea behind these methods consists in re-casting the classical HITS and PageRank algorithms as eigenvector problems for symmetric matrices, and using these symmetric matrices as Hamiltonians for CTQWs, in order to obtain a unitary evolution operator. The choice of the initial state is also crucial. Two options were tested: a vector with uniform occupation and a vector weighted w.r.t. in- or out-degrees (for authority and hub centrality, respectively). Two methods are based on a HITS-derived Hamiltonian, and two use a PageRank-derived Hamiltonian. Centrality scores for the nodes are defined as the average occupation values. All the methods have been tested on a set of small, simple graphs in order to spot possible evident drawbacks, and then on a larger number of artificially generated larger-sized graphs, in order to draw a comparison with classical HITS and PageRank. Numerical results show that, despite some pathologies found in three of the methods when analyzing small graphs, all the methods are effective in finding the first and top ten nodes in larger graphs. We comment on the results and offer some insight into the good accordance between classical and quantum approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978)

    Article  Google Scholar 

  2. Rodrigues, F.A.: Network centrality: an introduction. In: Macau, E. (ed.) A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems. Nonlinear Systems and Complexity, vol. 22, pp. 177–196. Springer, Cham (2019)

    Chapter  Google Scholar 

  3. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  5. Fogaras, D.: Where to start browsing the web? In: Innovative Internet Community Systems 2003. Lecture Notes in Computer Science, vol. 2877, pp. 65–79. Springer, Berlin, Heidelberg (2003)

  6. Zhirov, A.O., Zhirov, O.V., Shepelyansky, D.L.: Two-dimensional ranking of Wikipedia articles. Eur. Phys. J. B 77, 523–531 (2010)

    Article  MATH  ADS  Google Scholar 

  7. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  8. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: STOC ’01: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 50–59. ACM, New York (2001)

  9. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 303–327 (2003)

    Article  ADS  Google Scholar 

  10. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 32–41. IEEE (2004)

  11. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Portugal, R.: Quantum Walks and Search Algorithms, 2nd edn. Springer (2018)

  13. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: STOC ’03: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 59–68. ACM, New York (2003)

  14. Kempe, J.: Discrete quantum walks hit exponentially faster. Probab. Theory Relat. Fields 133, 215–235 (2005)

  15. Sánchez-Burillo, E., Duch, J., Gómez-Gardeñes, J., Zueco, D.: Quantum navigation and ranking in complex networks. Sci. Rep. 2, 605 (2012)

    Article  ADS  Google Scholar 

  16. Garnerone, S., Zanardi, P., Lidar, D.A.: Adiabatic quantum algorithm for search engine ranking. Phys. Rev. Lett. 108, 230506 (2012)

    Article  ADS  Google Scholar 

  17. Childs, A.M.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 581–603 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37–87 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  19. Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)

    Article  ADS  Google Scholar 

  20. Paparo, G.D., Martin-Delgado, M.A.: Google in a quantum network. Sci. Rep. 2, 444 (2012)

    Article  ADS  Google Scholar 

  21. Rossi, L., Torsello, A., Hancock, E.R.: Node centrality for continuous-time quantum walks. In: S+SSPR 2014: Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science, vol. 8621, pp. 103–112. Springer, Berlin, Heidelberg (2014)

  22. Izaac, J.A., Zhan, X., Bian, Z., Wang, K., Li, J., Wang, J.B., Xue, P.: Centrality measure based on continuous-time quantum walks and experimental realization. Phys. Rev. A 95, 032318 (2017)

    Article  ADS  Google Scholar 

  23. Izaac, J.A., Wang, J.B., Abbott, P.C., Ma, X.S.: Quantum centrality testing on directed graphs via PT-symmetric quantum walks. Phys. Rev. A 96, 032305 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  24. Loke, T., Tang, J.M., Rodriguez, J., Small, M., Wang, J.B.: Comparing classical and quantum PageRanks. Quantum Inf. Process. 16, 1–22 (2017)

    Article  MATH  Google Scholar 

  25. Chawla, P., Mangal, R., Chandrashekar, C.M.: Discrete-time quantum walk algorithm for ranking nodes on a network. Quantum Inf. Process. 19, 158 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Wu, T., Izaac, J.A., Li, Z.-X., Wang, K., Chen, Z.-Z., Zhu, S., Wang, J.B., Ma, X.-S.: Experimental parity-time symmetric quantum walks for centrality ranking on directed graphs. Phys. Rev. Lett. 125, 240501 (2020)

    Article  ADS  Google Scholar 

  27. Böttcher, L., Porter, M.A.: Classical and quantum random-walk centrality measures in multilayer networks. SIAM J. Appl. Math. 81, 2704–2724 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Boito, P., Grena, R.: Quantum hub and authority centrality measures for directed networks based on continuous-time quantum walks. J. Complex Netw. 9, cnab038 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Benzi, M., Estrada, E., Klymko, C.: Ranking hubs and authorities using matrix functions. Linear Algebra Appl. 438, 2447–2474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81–93 (1938)

    Article  MATH  Google Scholar 

  31. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Math. 1, 335–380 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chepelianskii, A.D.: Towards physical laws for software architecture. arXiv preprint arXiv:1003.5455 (2010)

  33. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507–531 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  34. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  35. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wong, T.G., Tarrataca, L., Nahimov, N.: Laplacian versus adjacency matrix in quantum walk search. Quantum Inf. Process. 15, 4029–4048 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using Network. In: G. Varoquaux, T. Vaught, and J. Millman (Eds) Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, pp. 11–15 (2008)

  38. Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 132–139 (2003)

  39. Peterson, N.R., Pittel, B.: Distance between two random k-out digraphs, with and without preferential attachment. Adv. Appl. Probab. 47(3), 858–879 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Goh, K.-I., Kahng, B., Kim, D.: Spectra and eigenvectors of scale-free networks. Phys. Rev. E 64, 051903 (2001)

    Article  ADS  Google Scholar 

  41. Martin, T., Zhang, X., Newman, M.E.J.: Localization and centrality in networks. Phys. Rev. E 90, 052808 (2014)

  42. Metz, F.L., Neri, I.: Localization and universality of eigenvectors in directed random graphs. Phys. Rev. Lett. 126, 040604 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  43. Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Math. 1(3), 335–380 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was partially supported by the project PRA_2020_92 “Quantum computing, technologies and application” funded by the University of Pisa, and by the INdAM—GNCS Project CUP_E53C22001930001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Grena.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boito, P., Grena, R. Ranking nodes in directed networks via continuous-time quantum walks. Quantum Inf Process 22, 246 (2023). https://doi.org/10.1007/s11128-023-03975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03975-6

Keywords

Navigation