Skip to main content
Log in

MDS codes with Euclidean and Hermitian hulls of flexible dimensions and their applications to EAQECCs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The hull of a linear code is the intersection of itself with its dual code with respect to certain inner product. Both Euclidean and Hermitian hulls are of theorical and practical significance. In this paper, we construct several new classes of maximum distance separable (MDS) codes via (extended) generalized Reed-Solomon (GRS) codes and determine their Euclidean or Hermitian hulls. As a consequence, four new classes of MDS codes with Hermitian hulls of flexible dimensions and six new classes of MDS codes with Euclidean hulls of flexible dimensions are constructed. As applications, for the former, we further construct four new families of entanglement-assisted quantum error-correcting codes (EAQECCs) and four new families of MDS EAQECCs of length \(n>q+1\). Meanwhile, many of the distance parameters of our MDS EAQECCs are greater than \(\lceil \frac{q}{2} \rceil \) or q; for the latter, we show some examples on Euclidean self-orthogonal and one-dimensional Euclidean hull MDS codes. In addition, two new general methods for constructing extended GRS codes with \((k-1)\)-dimensional Hermitian hull and Hermitian self-orthogonal extended GRS codes are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this paper.

References

  1. Allahmadi, A., AlKenani, A., Hijazi, R., Muthana, N., Özbudak, F., Solé, P.: New constructions of entanglement-assisted quantum codes. Cryptogr. Commun. 14(1), 15–37 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Assmus, E.F., Jr., Key, J.D.: Affine and projective planes. Discrete Math. 83(2–3), 161–187 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Calderbank, A., Shor, P.: Good quantum error-correcting codes exist. Phys. Rev. A Gen. Phys. 54(2), 1098–1105 (1996)

    ADS  Google Scholar 

  5. Chen, B., Liu, H.: New constructions of MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(8), 5776–5782 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Carlet, C., Li, C., Mesnager, S.: Linear codes with small hulls in semi-primitive case. Des. Codes Cryptogr. 87(12), 3063–3075 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Chen,H.: New MDS Entanglement-Assisted Quantum Codes from MDS Hermitian Self-Orthogonal Codes, arxiv preprint arXiv:2206.13995 (2022)

  8. Fan, J., Chen, H., Xu, J.: Constructions of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 423–434 (2016)

    MathSciNet  Google Scholar 

  9. Fang, W., Fu, F.: Two new classes of quantum MDS codes. Finite Fields Appl. 53, 85–98 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Fang, W., Fu, F.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65(12), 7840–7847 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Fang, W., Fu, F., Li, L., Zhu, S.: Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 66(6), 3527–3527 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Guardia, G.G.L.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55–64 (2004)

    MATH  Google Scholar 

  14. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18(4), 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Guo, G., Li, R., Liu, Y.: Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes. Finite Fields Appl. 76, 101901 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Guenda, K., Gulliver, T.A., Jitman, S., Thipworawimon, S.: Linear \(\ell \)-intersection pairs of codes and their applications. Des. Codes Cryptogr. 88(1), 133–152 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    MathSciNet  MATH  Google Scholar 

  18. He, X., Xu, L., Chen, H.: New q-ary quantum MDS codes with distances bigger than \(q^2\). Quantum Inf. Process. 15(7), 2745–2758 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Jin, R., Xie, D., Luo, J.: New classes of entanglement-assisted quantum MDS codes. Quantum Inf. Process. 19(9), 1–12 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Jin, R., Cao, Y., Luo, J.: Entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 20(2), 1–17 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Li, C., Zeng, P.: Constructions of linear codes with one-dimensional hull. IEEE Trans. Inf. Theory 65(3), 1668–1676 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18(3), 89 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Luo, G., Cao, X., Chen, X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Luo,G., Ezerman,M.F., Grassl,M., Ling,S.: How Much Entanglement Does a Quantum Code Need?, arxiv preprint arXiv:2207.05647 (2022)

  29. Li, Z., Xing, L., Wang, X.: Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance-separable codes. Phys. Rev. A 77(1), 012308 (2008)

    ADS  MathSciNet  Google Scholar 

  30. Li, L., Zhu, S., Liu, L.: Three new classes of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18(12), 1–16 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28(3), 496–511 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Leon, J.: Permutation group algorithms based on partition, I: Theory and algorithms. J. Symb. Comput. 12(4–5), 533–583 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Y., Li, R., Lv, L., Ma, Y.: Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes. Quantum Inf. Process. 17(8), 1–19 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Qian, L., Cao, X., Lu, W., Solé, P.: A new method for constructing linear codes with small hulls. Des. Codes Cryptogr. 90, 2663–2682 (2022)

    MathSciNet  MATH  Google Scholar 

  35. Qian, L., Cao, X., Mesnager, S.: Linear codes with one-dimensional hull associated with Gaussian sum. Cryptogr. Commun. 13(2), 225–243 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86(7), 1565–1572 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quantum Inf. Process. 18(3), 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Sok, L.: A new construction of linear codes with one-dimensional hull. Des. Codes Cryptogr. 90, 2823–2839 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Wang, G., Tang, C.: Application of GRS codes to some entanglement-assisted quantum MDS codes. Quantum Inf. Process. 21(3), 1–16 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Wang, G., Tang, C., Wei, W.: Some new constructions of optimal asymmetric quantum codes. Quantum Inf. Process. 22(1), 85 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Wang, Y., Tao, R.: Constructions of linear codes with small hulls from association schemes. Adv. Math. Commun. 16(2), 349–364 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referees for their helpful comments and suggestions. The authors would also like to thank the National Natural Science Foundation of China (Nos.U21A20428 and 12171134) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixin Zhu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundation of China (Nos.U21A20428 and 12171134).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wan, R. & Zhu, S. MDS codes with Euclidean and Hermitian hulls of flexible dimensions and their applications to EAQECCs. Quantum Inf Process 22, 153 (2023). https://doi.org/10.1007/s11128-023-03900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03900-x

Keywords

Mathematics Subject Classification

Navigation