Skip to main content
Log in

Robust mechanical entanglement in an atom-assisted hybrid optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We theoretically explore the bipartite robust steady-state entanglement between two charged nanomechanical oscillators in an atom-assisted hybrid optomechanical system. The logarithmic negativity is adopted to measure entanglement. We find that the mechanical entanglement induced by Coulomb interaction could only survive at ultralow temperature of a few tens of mK in case of bare cavity. However, by adding the atomic degrees of freedom, the entanglement properties could be effectively modified including a further enhanced degree and broadened range of entanglement. In addition, the enhanced entanglement becomes more robust against thermal noise. This robustness is more evident when appropriately increasing the laser power. Compared to the case of no atoms, the critical temperature is raised by about two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Jones, J.A., Jaksch, D.: Quantum Information, Computation and Communication. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  2. Schwab, K.C., Roukes, M.L.: Putting mechanics into quantum mechanics. Phys. Today 58(7), 36–42 (2005)

    Article  Google Scholar 

  3. Goda, K., Miyakawa, O., Mikhailov, E.E., Saraf, S., Adhikari, R., McKenzie, K., Ward, R., Vass, S., Weinstein, A.J., Mavalvala, N.: A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4(6), 472–476 (2008)

    Article  Google Scholar 

  4. Taylor, M.A., Janousek, J., Daria, V., Knittel, J., Hage, B., Bachor, H.A., Bowen, W.P.: Biological measurement beyond the quantum limit. Nat. Photon. 7(3), 229–233 (2013)

    Article  ADS  Google Scholar 

  5. Poot, M., van der Zant, H.S.: Mechanical systems in the quantum regime. Phys. Rep. 511(5), 273–335 (2012)

    Article  ADS  Google Scholar 

  6. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014)

    Article  ADS  Google Scholar 

  7. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321(5893), 1172–1176 (2008)

    Article  ADS  Google Scholar 

  8. Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65(7), 29–35 (2012)

    Article  Google Scholar 

  9. Bose, S., Jacobs, K., Knight, P.: Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56(5), 4175 (1997)

    Article  ADS  Google Scholar 

  10. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91(13), 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Mazzola, L., Paternostro, M.: Distributing fully optomechanical quantum correlations. Phys. Rev. A 83(6), 062335 (2011)

    Article  ADS  Google Scholar 

  12. Xu, X.W., Wang, H., Zhang, J., Liu, Y.X.: Engineering of nonclassical motional states in optomechanical systems. Phys. Rev. A 88(6), 063819 (2013)

    Article  ADS  Google Scholar 

  13. Gigan, S., Böhm, H., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J., Schwab, K.C., Bäuerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444(7115), 67–70 (2006)

    Article  ADS  Google Scholar 

  14. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K., Kippenberg, T.J.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97(24), 243905 (2006)

    Article  ADS  Google Scholar 

  15. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O., Kippenberg, T.J.: Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4(5), 415–419 (2008)

    Article  Google Scholar 

  16. Riviere, R., Deleglise, S., Weis, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys. Rev. A 83(6), 063835 (2011)

    Article  ADS  Google Scholar 

  17. Jähne, K., Genes, C., Hammerer, K., Wallquist, M., Polzik, E., Zoller, P.: Cavity-assisted squeezing of a mechanical oscillator. Phys. Rev. A 79(6), 063819 (2009)

    Article  ADS  Google Scholar 

  18. Liao, J.Q., Law, C., et al.: Parametric generation of quadrature squeezing of mirrors in cavity optomechanics. Phys. Rev. A 83(3), 033820 (2011)

    Article  ADS  Google Scholar 

  19. Agarwal, G., Huang, S.: Strong mechanical squeezing and its detection. Phys. Rev. A 93(4), 043844 (2016)

    Article  ADS  Google Scholar 

  20. Vitali, D., Gigan, S., Ferreira, A., Böhm, H., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98(3), 030405 (2007)

    Article  ADS  Google Scholar 

  21. Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77(5), 050307 (2008)

    Article  ADS  Google Scholar 

  22. Barzanjeh, S., Naderi, M., Soltanolkotabi, M.: Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling. Phys. Rev. A 84(6), 063850 (2011)

    Article  ADS  Google Scholar 

  23. Zhang, J., Peng, K., Braunstein, S.L.: Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68(1), 013808 (2003)

    Article  ADS  Google Scholar 

  24. Pinard, M., Dantan, A., Vitali, D., Arcizet, O., Briant, T., Heidmann, A.: Entangling movable mirrors in a double-cavity system. Europhys. Lett. 72(5), 747 (2005)

    Article  ADS  Google Scholar 

  25. Huang, S., Agarwal, G.: Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light. New J. Phys. 11(10), 103044 (2009)

    Article  ADS  Google Scholar 

  26. Vacanti, G., Paternostro, M., Palma, G.M., Vedral, V.: Optomechanical to mechanical entanglement transformation. New J. Phys. 10(9), 095014 (2008)

    Article  ADS  Google Scholar 

  27. Hartmann, M.J., Plenio, M.B.: Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101(20), 200503 (2008)

    Article  ADS  Google Scholar 

  28. Joshi, C., Larson, J., Jonson, M., Andersson, E., Öhberg, P.: Entanglement of distant optomechanical systems. Phys. Rev. A 85(3), 033805 (2012)

    Article  ADS  Google Scholar 

  29. Liao, J.Q., Wu, Q.Q., Nori, F., et al.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89(1), 014302 (2014)

    Article  ADS  Google Scholar 

  30. Zhou, L., Han, Y., Jing, J., Zhang, W.: Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence. Phys. Rev. A 83(5), 052117 (2011)

    Article  ADS  Google Scholar 

  31. Ghobadi, R., Bahrampour, A., Simon, C.: Quantum optomechanics in the bistable regime. Phys. Rev. A 84(3), 033846 (2011)

    Article  ADS  Google Scholar 

  32. Jiang, C., Liu, H., Cui, Y., Li, X., Chen, G., Shuai, X.: Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Phys. Rev. A 88(5), 055801 (2013)

    Article  ADS  Google Scholar 

  33. Kyriienko, O., Liew, T.C.H., Shelykh, I.A.: Optomechanics with cavity polaritons: dissipative coupling and unconventional bistability. Phys. Rev. Lett. 112(7),(2014)

  34. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81(4), 041803 (2010)

    Article  ADS  Google Scholar 

  35. Huang, S., Agarwal, G.: Electromagnetically induced transparency with quantized fields in optocavity mechanics. Phys. Rev. A 83(4), 043826 (2011)

    Article  ADS  Google Scholar 

  36. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330(6010), 1520–1523 (2010)

    Article  ADS  Google Scholar 

  37. Huang, S., Agarwal, G.: Normal-mode splitting and antibunching in stokes and anti-stokes processes in cavity optomechanics: radiation-pressure-induced four-wave-mixing cavity optomechanics. Phys. Rev. A 81(3), 033830 (2010)

    Article  ADS  Google Scholar 

  38. Jiang, C., Cui, Y., Liu, H.: Controllable four-wave mixing based on mechanical vibration in two-mode optomechanical systems. Europhys. Lett. 104(3), 34004 (2013)

    Article  ADS  Google Scholar 

  39. Li, Z., You, X., Li, Y., Liu, Y.C., Peng, K.: Multimode four-wave mixing in an unresolved sideband optomechanical system. Phys. Rev. A 97(3), 033806 (2018)

    Article  ADS  Google Scholar 

  40. Safavi-Naeini, A.H., Alegre, T.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69–73 (2011)

    Article  ADS  Google Scholar 

  41. Chen, B., Jiang, C., Zhu, K.D.: Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys. Rev. A 83(5),(2011)

  42. Tarhan, D., Huang, S., Müstecaplıoğlu, Ö.E.: Superluminal and ultraslow light propagation in optomechanical systems. Phys. Rev. A 87(1), 013824 (2013)

    Article  ADS  Google Scholar 

  43. Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92(2), 023846 (2015)

    Article  ADS  Google Scholar 

  44. Gu, K.H., Yan, X.B., Zhang, Y., Fu, C.B., Liu, Y.M., Wang, X., Wu, J.H.: Tunable slow and fast light in an atom-assisted optomechanical system. Opt. Commun. 338, 569–573 (2015)

    Article  ADS  Google Scholar 

  45. Çakir, Ö., Klyachko, A.A., Shumovsky, A.S.: Steady-state entanglement of two atoms created by classical driving field. Phys. Rev. A 71(3), 034303 (2005)

    Article  ADS  Google Scholar 

  46. Xu, J.B., Li, S.B.: Control of the entanglement of two atoms in an optical cavity via white noise. New J. Phys. 7(1), 72 (2005)

    Article  ADS  Google Scholar 

  47. Fedorov, M., Efremov, M., Kazakov, A., Chan, K., Law, C., Eberly, J.: Spontaneous emission of a photon: Wave-packet structures and atom-photon entanglement. Phys. Rev. A 72(3), 032110 (2005)

    Article  ADS  Google Scholar 

  48. Cory, D.G., Havel, T.F.: Ion entanglement in quantum information processing. Science 304(5676), 1456–1457 (2004)

    Article  Google Scholar 

  49. Casabone, B., Stute, A., Friebe, K., Brandstätter, B., Schüppert, K., Blatt, R., Northup, T.: Heralded entanglement of two ions in an optical cavity. Phys. Rev. Lett. 111(10), 100505 (2013)

    Article  ADS  Google Scholar 

  50. Stute, A., Casabone, B., Schindler, P., Monz, T., Schmidt, P., Brandstätter, B., Northup, T., Blatt, R.: Tunable ion-photon entanglement in an optical cavity. Nature 485(7399), 482–485 (2012)

    Article  ADS  Google Scholar 

  51. Abdel-Aty, M., Larson, J., Eleuch, H., Obada, A.: Multi-particle entanglement of charge qubits coupled to a nanoresonator. Physica E 43(9), 1625–1630 (2011)

    Article  ADS  Google Scholar 

  52. Jiang, C., Bian, X., Cui, Y., Chen, G.: Optical bistability and dynamics in an optomechanical system with a two-level atom. JOSA B 33(10), 2099–2104 (2016)

    Article  ADS  Google Scholar 

  53. Genes, C., Ritsch, H., Vitali, D.: Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys. Rev. A 80(6), 061803 (2009)

    Article  ADS  Google Scholar 

  54. Genes, C., Ritsch, H., Drewsen, M., Dantan, A.: Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency. Phys. Rev. A 84(5), 051801 (2011)

    Article  ADS  Google Scholar 

  55. Xiao, Y., Yu, Y.F., Zhang, Z.M.: Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble. Opt. Express 22(15), 17979–17989 (2014)

    Article  ADS  Google Scholar 

  56. Su, X., Huang, Y.M., Xiong, H.: Tunable second-order sideband generation in a hybrid cavity-atom optomechanical system. IEEE Access 7, 133832 (2019)

    Article  Google Scholar 

  57. Tian, L., Zoller, P.: Coupled ion-nanomechanical systems. Phys. Rev. Lett. 93(26), 266403 (2004)

    Article  ADS  Google Scholar 

  58. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90(4), 043825 (2014)

    Article  ADS  Google Scholar 

  59. Wang, Q., Zhang, J.Q., Ma, P.C., Yao, C.M., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A 91(6), 063827 (2015)

    Article  ADS  Google Scholar 

  60. Lu, T.X., Jiao, Y.F., Zhang, H.L., Saif, F., Jing, H.: Selective and switchable optical amplification with mechanical driven oscillators. Phys. Rev. A 100(1), 013813 (2019)

    Article  ADS  Google Scholar 

  61. Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58(12), 1098 (1940)

    Article  ADS  MATH  Google Scholar 

  62. Sun, C., Li, Y., Liu, X.: Quasi-spin-wave quantum memories with a dynamical symmetry. Phys. Rev. Lett. 91(14), 147903 (2003)

    Article  ADS  Google Scholar 

  63. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (2007)

    MATH  Google Scholar 

  64. DeJesus, E.X., Kaufman, C.: Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35(12), 5288 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  65. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  66. Abdel-Aty, M., Yu, T.: Entanglement sudden birth of two trapped ions interacting with a time-dependent laser field. J. Phys. B At. Mol. Opt. Phys. 41(23), 235503 (2008)

    Article  ADS  Google Scholar 

  67. Zhang, J.S., Chen, A.X., Abdel-Aty, M.: Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement. J. Phys. B At. Mol. Opt. Phys. 43(2), 025501 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11775190 and 12175199, and Zhejiang Provincial Natural Science Foundation of China under Grant No. LZ20A040002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Xi Chen.

Ethics declarations

Conflict of interest

We declared that we have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, AX. Robust mechanical entanglement in an atom-assisted hybrid optomechanical system. Quantum Inf Process 21, 370 (2022). https://doi.org/10.1007/s11128-022-03686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03686-4

Keywords

Navigation