Skip to main content
Log in

Quantum convolutional codes concatenated with the GKP code for correcting continuous errors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum convolutional codes constructed with the stabilizer formalism have the ability to protect a sequence of qubits against decoherence. Such codes can correct errors including phase-flip errors and bit-flip errors at the receiver by measuring the error syndrome. In this paper, we propose a framework of quantum convolutional codes which can deal with continuous errors that occur more frequently in quantum channels. We concatenate quantum convolutional codes with the GKP code which is designed to be resistant to small shift errors. Instead of measuring the error syndrome, we make use of the output information of the decoding circuit with several iterations to further reduce the error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  2. Calderbank, A., Shor, P.: Good quantum error correcting code exist. Phys. Rev. A 54, 1098–1103 (1996)

    Article  ADS  Google Scholar 

  3. Steane, A.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2576 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gottesman, D.: Class of quantum error-correcting code saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226–245 (2019)

    Article  ADS  Google Scholar 

  6. Horsman, C., et al.: Surface code quantum computing by lattice surgery. New J. Phys. 14(12), 6118–6124 (2012)

    Article  MathSciNet  Google Scholar 

  7. Sameti, M., Poto, A., Nik, B.D.E., et al.: Superconducting quantum simulator for topological order and the toric code. Phys. Rev. A 95(4), 042330 (2017)

    Article  ADS  Google Scholar 

  8. Vuillot, C., et al.: Quantum Error Correction with the Toric-GKP Code (2018)

  9. Cao, C.J., Lackey, B.: Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks (2021)

  10. Liao, P., Sanders, B.C., Feder, D.L.: Topological graph states and quantum error correction codes (2021)

  11. Chau, H.F.: Quantum convolutional error-correcting codes. Phys. Rev. A 58(2), 905 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Johannesson, R., Zigangirov, K.S.: Fundamentals of Convolutional Coding. Wiley, New York (2015)

    Book  Google Scholar 

  13. Ollivier, H., Tillich, J.-P.: Description of a quantum convolutional code. Phys. Rev. Lett. 91(17), 177902 (2003)

    Article  ADS  Google Scholar 

  14. Forney, G.D., Guha, S.: Simple rate-1/3 convolutional and tail-biting quantum error-correcting codes. In: Proceedings. International Symposium on Information Theory: ISIT 2005. IEEE 2005, pp. 1028–1032 (2005)

  15. Forney, G.D., Grassl, M., Guha, S.: Convolutional and tail-biting quantum error-correcting codes. IEEE Trans. Inf. Theory 53, 865–880 (2007)

    Article  MathSciNet  Google Scholar 

  16. Grassl, M., Rotteler, M.: Constructions of quantum convolutional codes. In: IEEE International Symposium on Information Theory. IEEE 2007, pp. 816–820 (2007)

  17. Wilde, M.M., Brun, T.A.: Entanglement-assisted quantum convolutional coding. Phys. Rev. A 81(4), 042333 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Aly, S.A., Grassl, M., Klappenecker, A., et al.: Quantum convolutional BCH codes. In: 10th Canadian Workshop on Information Theory (CWIT). IEEE 2007, pp. 180–183 (2007)

  19. Grassl, M., Rötteler, M.: Quantum block and convolutional codes from self-orthogonal product codes. In: Proceedings IEEE International Symposium Information Theory, Adelaide, Australia 2005, pp. 1018–1022 (2005)

  20. Gottesman, D., Kitaev, A., Preskill, J.: Encoding a qubit in an oscillator. Phys. Rev. A 64(1), 012310 (2001)

    Article  ADS  Google Scholar 

  21. Gottesman, D.: Stabilizer codes and quantum error correction. arXiv preprint arXiv:quant-ph/9705052 (1997)

  22. Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Quantum Information Science and Its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58 (2009)

  23. Djordjevic, I.: Quantum Information Processing and Quantum Error Correction: An Engineering Approach. Academic Press, Boca Raton (2012)

    MATH  Google Scholar 

  24. Ollivier, H., Tillich, J.P.: Quantum convolutional codes: fundamentals. arXiv preprint arXiv:quant-ph/0401134 (2004)

  25. Wang, Y.: Quantum error correction with the GKP code and concatenation with stabilizer codes. arXiv preprint arXiv:1908.00147 (2019)

  26. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  27. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Chen, X. Quantum convolutional codes concatenated with the GKP code for correcting continuous errors. Quantum Inf Process 21, 198 (2022). https://doi.org/10.1007/s11128-022-03545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03545-2

Keywords

Navigation