Skip to main content
Log in

Higher-rate quantum key expansion scheme

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The paper describes a quantum technique for relativistic high-dimensional key distribution without public announcement of bases, also known as quantum key expansion, which securely transfers 2 bits per setup usage given that a pre-shared bit is at disposal to the parties. This becomes possible by utilizing both phase and polarization encodings. The work presents both single-photon and weak-coherent-state interferometric setups for the purpose of the proposed scheme. The proposed key distribution is characterized with higher rate than any existing protocols of such type. Also, the proposed scheme has the highest efficiency of the existing quantum key expansion protocols. It should be noted that the highest efficiency is obtained only for the case of single-photon regime of the scheme; the weak-coherent-pulse regime manifests lower efficiency. Moreover, compared to other relativistic quantum key distribution schemes, the proposed one shows better rate and efficiency (weak-coherent-pulse regime is considered). The improvement comes at no security cost. However, at the cost of improving efficiency and rate, the practicality of the scheme reduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Detailed Table 1 is available from the corresponding author on reasonable request. No other data sharing is applicable to this article as no additional datasets were generated or analysed during the current work.

References

  1. Bennett, Ch., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179 (1984)

  2. Bennett, Ch., Brassard, G., Mermin, N.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bennett, Ch.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  5. Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002)

    Article  ADS  Google Scholar 

  6. Stucki, D., Brunner, N., Gisin, N., Scarani, V., Zbinden, H.: Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87, 194108 (2005)

    Article  ADS  Google Scholar 

  7. Lo, H., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  8. Lo, H., Chau, H., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133 (2005)

    Article  MathSciNet  Google Scholar 

  9. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  10. Hwang, W.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 57901 (2003)

    Article  ADS  Google Scholar 

  11. Lo, H., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  12. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  13. Deng, F., Long, G., Liu, X.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  14. Wang, C., Deng, F., Li, Y., Liu, X., Long, G.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  15. Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  16. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  17. Niu, P., Zhou, Z., Lin, Z., Sheng, Y., Yin, L., Long, G.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345–1350 (2018)

    Article  Google Scholar 

  18. Wang, C.: Quantum secure direct communication: intersection of communication and cryptography. Fundam. Res. 1, 91–92 (2021)

    Article  Google Scholar 

  19. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. QIP 14, 739 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Joy, D., Surendran, S., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. QIP 16, 1 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Yan, F., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75 (2004)

    Article  ADS  Google Scholar 

  22. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. QIP 14, 2195 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Zhou, N., Zhu, K., Zou, X.: Multi-party semi-quantum key distribution protocol with four-particle cluster state. Ann. Phys. 531, 1800520 (2019)

    Article  MathSciNet  Google Scholar 

  24. Mehic, M., Niemiec, M., Siljak, H., Voznak, M.: Error reconciliation in quantum key distribution protocols. In: Ulidowski, I., Lanese, I., Schultz, U., Ferreira, C. (eds.) Reversible Computation: Extending Horizons of Computing. RC 2020. Lecture Notes in Computer Science, vol. 12070. Springer, Cham (2020)

  25. Bennett, Ch., Brassard, G., Crepeau, C., Maurer, U.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)

    Article  MathSciNet  Google Scholar 

  26. Hwang, W., Koh, I., Han, Y.: Quantum cryptography without public announcement of bases. Phys. Rev. A 244, 489 (1998)

    MATH  Google Scholar 

  27. Yang, Y., Luo, L., Yin, G.: A new secure quantum key expansion scheme. Int. J. Theor. Phys. 52, 2008–2016 (2013)

    Article  MathSciNet  Google Scholar 

  28. Truschechkin, A., Tregubov, P., Kiktenko, E., Kurochkin, Y., Fedorov, A.: Quantum-key-distribution protocol with pseudorandom bases. Phys. Rev. A 97, 012311 (2018)

    Article  ADS  Google Scholar 

  29. Chanigui, E., Azizi, A.: A modified secure scheme of quantum key distribution without public announcement bases. J. Comp. Sci. 11, 75 (2015)

    Article  Google Scholar 

  30. Lin, S., Liu, X.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51, 2514–2523 (2012)

    Article  MathSciNet  Google Scholar 

  31. Kravtsov, K., et al.: Relativistic quantum key distribution system with one-way quantum communication. Sci. Rep. 8, 6102 (2018)

    Article  ADS  Google Scholar 

  32. Vedral, V.: Introduction to Quantum Information Science, pp. 25–27. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  33. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863–1869 (1995)

    Article  ADS  Google Scholar 

  34. Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018)

    Article  Google Scholar 

  35. Islam, N.: High-Rate, High-Dimensional Quantum Key Distribution Systems. Springer Theses. Springer, Cham (2018)

  36. Bebrov, G.: Higher-rate relativistic quantum key distribution. Sci. Rep. 11, 23543 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by the project \(\hbox {K}\Pi \)-06-H37/18 /06.12.2019, funded by National Science Fund, Ministry of Education and Science, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Bebrov.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebrov, G. Higher-rate quantum key expansion scheme. Quantum Inf Process 21, 202 (2022). https://doi.org/10.1007/s11128-022-03543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03543-4

Keywords

Navigation