Skip to main content
Log in

Quantum algorithms for numerical differentiation of expected values with respect to parameters

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum algorithms for Monte Carlo integration (QMCI), which are based on quantum amplitude estimation (QAE), speed up expected value calculation compared with classical counterparts and have been widely investigated along with their applications to industrial problems such as financial derivative pricing. In this paper, we consider an expected value of a function of a stochastic variable and a real-valued parameter and how to calculate derivatives of the expectation with respect to the parameter. This problem is related to calculating sensitivities of financial derivatives and so of industrial importance. Based on QMCI and the general-order central difference formula for numerical differentiation, we propose two quantum methods for this problem and evaluate their complexities. The first one, which we call the naive iteration method, simply calculates the formula by iterative computations and additions of the terms in it and then estimates its expected value by QAE. The second one, which we name the sum-in-QAE method, performs the summation of the terms at the same time as the sum over the possible values of the stochastic variable in a single QAE. We see that, depending on the smoothness of the function and the number of qubits available, either of two methods is better than the other. In particular, when the function is nonsmooth or we want to save the qubit number, the sum-in-QAE method can be advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. In this paper, when we simply say a derivative, it refers to a mathematical terms, that is, a derivative of a function. On the other hand, when we refer to a derivative as a financial product, we use a financial derivative.

  2. Although we considered the case that n is set to the minimum value \(\left\lceil \frac{m}{2}\right\rceil \) in Theorem 3, we omit this case here, since this is less efficient than larger n in terms of both query complexity and qubit number, as we saw in the proof of Theorem 3.

References

  1. Montanaro, A.: Quantum speedup of Monte Carlo methods. Proc. R. Soc. Ser. A 471(2181), 20150301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Suzuki, Y., et al.: Amplitude estimation without phase estimation. Quantum Inf. Process. 19, 75 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. Herbert, S.: Quantum Monte-Carlo Integration: the full advantage in minimal circuit depth. arXiv:2105.09100 (2021)

  4. Brassard, G., et al.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53 (2002)

    Article  MathSciNet  Google Scholar 

  5. Aaronson, S., Rall, P.: Quantum approximate counting, simplified. In Proceedings of Symposium on Simplicity in Algorithms, pp. 24–32. SIAM (2020)

  6. Grinko, D., et al.: Iterative quantum amplitude estimation. npj Quantum Inf. 7, 52 (2021)

  7. Nakaji, K.: Faster amplitude estimation. Quantum Inf. Comput. 20, 1109 (2020)

    MathSciNet  Google Scholar 

  8. Brown, E.G., et al.: Quantum amplitude estimation in the presence of noise. arXiv:2006.14145 (2020)

  9. Kerenidis, I., Prakash, A.: A method for amplitude estimation with noisy intermediate-scale quantum computers. U.S. Patent Application No. 16/892,229 (2020)

  10. Giurgica-Tiron, T., et al.: Low depth algorithms for quantum amplitude estimation. arXiv:2012.03348 (2020)

  11. Tanaka, T., et al.: Amplitude estimation via maximum likelihood on noisy quantum computer. Quantum Inf. Process. 20, 293 (2021)

    Article  MathSciNet  Google Scholar 

  12. Uno, S., et al.: Modified Grover operator for amplitude estimation. New J. Phys. 23, 083031 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, G., et al.: Minimizing estimation runtime on noisy quantum computers. PRX Quantum 2, 010346 (2021)

    Article  Google Scholar 

  14. Rebentrost, P., et al.: Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A 98, 022321 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Stamatopoulos, N., et al.: Option pricing using quantum computers. Quantum 4, 291 (2020)

    Article  Google Scholar 

  16. Kaneko, K., et al.: Quantum pricing with a smile: Implementation of local volatility model on quantum computer. EPJ Quantum Technol. 9, 7 (2022)

  17. Tang, H., et al.: Quantum computation for pricing the collateralized debt obligations. Quantum Eng. 3(4), e84 (2021)

    Google Scholar 

  18. Martin, A., et al.: Towards pricing financial derivatives with an IBM quantum computer. Phys. Rev. Res. 3, 013167 (2021)

    Article  Google Scholar 

  19. Ramos-Calderer, S., et al.: Quantum unary approach to option pricing. Phys. Rev. A 103, 032414 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  20. Vazquez, A.C., Woerner, S.: Efficient state preparation for quantum amplitude estimation. Phys. Rev. Appl. 15, 034027 (2021)

    Article  ADS  Google Scholar 

  21. Chakrabarti, S., et al.: A threshold for quantum advantage in derivative pricing. Quantum 5, 463 (2021)

    Article  Google Scholar 

  22. An, D., et al.: Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. Quantum 5, 481 (2021)

    Article  Google Scholar 

  23. Miyamoto, K.: Bermudan option pricing by quantum amplitude estimation and Chebyshev interpolation. EPJ Quantum Technol. 9, 3 (2022)

  24. Hull, J.C.: Options, Futures, and Other Derivatives. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  25. Jordan, S.P.: Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett. 95, 050501 (2005)

    Article  ADS  Google Scholar 

  26. Gilyén, A., Arunachalam, S., Wiebe, N.: Optimizing quantum optimization algorithms via faster quantum gradient computation. In: Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pp. 1425–1444. SIAM (2019)

  27. Cornelissen, A.: Quantum gradient estimation of Gevrey functions. arXiv:1909.13528 (2019)

  28. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer (2003)

  29. Fowler, A.G., et al.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)

    Article  ADS  Google Scholar 

  30. Li, J.: General explicit difference formulas for numerical differentiation. J. Comput. Appl. Math. 183, 29 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  32. Draper, T. G.: Addition on a quantum computer. arXiv:quant-ph/0008033 (2000)

  33. Cuccaro, S.A., et al.: A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184 (2004)

  34. Takahashi, Y., et al.: A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf. Comput. 5, 440 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Draper, T.G., et al.: A logarithmic-depth quantum carry-lookahead adder. Quantum Inf. Comput. 6, 351 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Alvarez-Sanchez, J.J., et al.: A quantum architecture for multiplying signed integers. J. Phys. Conf. Ser. 128, 012013 (2008)

    Article  Google Scholar 

  37. Takahashi, Y., et al.: A fast quantum circuit for addition with few qubits. Quantum Inf. Comput. 8, 636 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Takahashi, Y., et al.: Quantum addition circuits and unbounded fan-out. Quantum Inf. Comput. 10, 0872 (2010)

    MathSciNet  Google Scholar 

  39. Khosropour, A., et al.: Quantum division circuit based on restoring division algorithm. In: Proceedings of 2011 Eighth International Conference on Information Technology: New Generations, pp. 1037–1040 (2011)

  40. Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic based binary and BCD adder circuits. J. Emerg. Technol. Comput. Syst. 9, 17 (2013)

    Article  Google Scholar 

  41. Thapliyal, H.: Mapping of subtractor and adder-subtractor circuits on reversible quantum gates. Trans. Comput. Sci. XXVII, 10 (2016)

  42. Jayashree, H.V., et al.: Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J. Supercomput. 72, 1477 (2016)

    Article  Google Scholar 

  43. Dibbo, S.V., et al.: An efficient design technique of a quantum divider circuit. In: Proceedings of 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2102–2105 (2016)

  44. Muñoz-Coreas, E., Thapliyal, H.: T-count and qubit optimized quantum circuit design of the non-restoring square root algorithm. ACM J. Emerg. Technol. Comput. Syst. 14, 3 (2018)

    Article  Google Scholar 

  45. Muñoz-Coreas, E., Thapliyal, H.: Quantum circuit design of a T-count optimized integer multiplier. IEEE Trans. Comput. 68, 5 (2019)

    Article  MathSciNet  Google Scholar 

  46. Thapliyal, H., et al.: Quantum circuit designs of integer division optimizing T-count and T-depth. IEEE Trans. Emerg. Top. Comput. 9, 1045 (2019)

    Article  Google Scholar 

  47. Häner, T., Roetteler, M., Svore,K. M.: Optimizing Quantum Circuits for Arithmetic. arXiv:1805.12445 (2018)

  48. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions. quant-ph/0208112 (2002)

  49. Miyamoto, K., Shiohara, K.: Reduction of qubits in quantum algorithm for Monte Carlo simulation by pseudo-random number generator. Phys. Rev. A 102, 022424 (2020)

    Article  ADS  Google Scholar 

  50. Egger, D.J., et al.: Credit risk analysis using quantum computers. IEEE Trans. Comput. 70(12), 2136 (2020)

    Article  MathSciNet  Google Scholar 

  51. Mottonen, M., et al.: Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 5, 467 (2005)

    MathSciNet  MATH  Google Scholar 

  52. Bergholm, V., et al.: Quantum circuits with uniformly controlled one-qubit gates. Phys. Rev. A 71, 052330 (2005)

    Article  ADS  Google Scholar 

  53. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. IEEE Trans. Comput. Aided Des. 25, 1000 (2006)

    Article  Google Scholar 

  54. Plesch, M., Brukner, C.: Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011)

    Article  ADS  Google Scholar 

  55. Iten, R., et al.: Quantum circuits for isometries. Phys. Rev. A 93, 032318 (2016)

    Article  ADS  Google Scholar 

  56. Park, D.K., Petruccione, F., Rhee, J.-K.K.: Circuit-based quantum random access memory for classical data. Sci. Rep. 9, 3949 (2019)

    Article  ADS  Google Scholar 

  57. Araujo, I.S., et al.: A divide-and-conquer algorithm for quantum state preparation. Sci. Rep. 11, 6329 (2021)

    Article  Google Scholar 

  58. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62, 26 (1955)

Download references

Acknowledgements

This work was supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number JPMXS0120319794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Miyamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 1

Proof

First, we consider the case where \(m\ge 2\). From the definition of \(a^{(m)}_{n,j}\) in (6),

$$\begin{aligned} |a^{(m)}_{n,j}| \le \sum _{\begin{array}{c} \{l_1,\ldots \ldots ,l_{m-1}\}\in \qquad \quad \\ \mathcal {P}_{m-1}([-n:n]\setminus \{0,j\}) \end{array}} \frac{(n!)^2}{|jl_1\cdots l_{m-1}|} \end{aligned}$$
(A 1)

holds for any \(j\in [-n:n]\setminus \{0\}\). Note that

$$\begin{aligned}&\sum _{\begin{array}{c} \{l_1,\ldots ,l_{m-1}\}\in \qquad \quad \\ \mathcal {P}_{m-1}([-n:n]\setminus \{0,j\}) \end{array}} \frac{1}{|l_1\cdots l_{m-1}|} \nonumber \\&\quad \le \frac{1}{(m-1)!} \left( \frac{1}{|-n|}+\cdots +\frac{1}{|-1|}+\frac{1}{1}+\cdots +\frac{1}{n}\right) ^{m-1} \nonumber \\&\quad \le \frac{\left( 2n\right) ^{m-1}}{(m-1)!} \nonumber \\&\quad \le \frac{m^{2n}}{(m-1)!}. \end{aligned}$$
(A 2)

Here, the third inequality follows from \(\left( 2n\right) ^{m-1}\le m^{2n}\), which holds for any positive integers m and n such that \(m\le 2n\). Then, we see that

$$\begin{aligned} |a^{(m)}_{n,j}| \le \frac{(n!)^2m^{2n}}{|j|(m-1)!}. \end{aligned}$$
(A 3)

This holds also when \(m=1\), since

$$\begin{aligned} \left| a^{(1)}_{n,j}\right| =\left| \frac{\prod _{i\in [-n:n]\setminus \{0\}}i}{j}\right| =\frac{(n!)^2}{|j|}. \end{aligned}$$
(A 4)

Hence, combining this and (24) with the definition of \(R_f(x,n,m,h)\) in (6), we have

$$\begin{aligned} |R_f(x,n,m,h)|\le & {} \frac{Mm!\left( n!\right) ^2m^{2n}}{(2n+1)!(m-1)!}\sum _{j=-n}^n\frac{|j|^{2n}}{(n+j)!(n-j)!} \nonumber \\\le & {} \frac{Mm\left( n!\right) ^2n^{2n}m^{2n}}{(2n+1)!(2n)!}\sum _{j=-n}^n\left( {\begin{array}{c}2n\\ n+j\end{array}}\right) \nonumber \\\le & {} \frac{Mm\left( n!\right) ^2(2n)^{2n}m^{2n}}{(2n+1)!(2n)!} \nonumber \\\le & {} \frac{Mm(2n)^{2n}m^{2n}}{(2n+1)}\left( \frac{n^{n+\frac{1}{2}}e^{-n}e^{\frac{1}{12n}}}{(2n)^{2n+\frac{1}{2}}e^{-2n}e^{\frac{1}{24n+1}}}\right) ^2\nonumber \\= & {} \frac{Mm}{2(2n+1)}\left( \frac{em}{2}\right) ^{2n}e^{\frac{1}{6n}-\frac{2}{24n+1}}\nonumber \\\le & {} Mm \left( \frac{em}{2}\right) ^{2n}. \end{aligned}$$
(A 5)

Here, we used \(\sum _{j=0}^k\left( {\begin{array}{c}k\\ j\end{array}}\right) =2^k\), which holds for any \(k\in \mathbb {N}\), at the third inequality, and

$$\begin{aligned} \sqrt{2\pi }n^{n+\frac{1}{2}}e^{-n}e^{\frac{1}{12n+1}}<n!<\sqrt{2\pi }n^{n+\frac{1}{2}}e^{-n}e^{\frac{1}{12n}}, \end{aligned}$$
(A 6)

which is given in [58], at the fourth inequality. \(\square \)

Appendix B: Proof of Lemma 2

Proof

When \(m\ge 2\), because of (A 1), we have

$$\begin{aligned} \left| d^{(m)}_{n,j}\right|\le & {} \frac{m!(n!)^2}{(n+j)!(n-j)!|j|}\sum _{\begin{array}{c} \{l_1,\ldots ,l_{m-1}\}\in \qquad \quad \\ \mathcal {P}_{m-1}([-n:n]\setminus \{0,j\}) \end{array}} \frac{1}{|l_1\cdots l_{m-1}|} \nonumber \\\le & {} \frac{m!}{|j|}\sum _{\begin{array}{c} \{l_1,\ldots ,l_{m-1}\}\in \qquad \quad \\ \mathcal {P}_{m-1}([-n:n]\setminus \{0,j\}) \end{array}} \frac{1}{|l_1\cdots l_{m-1}|} \end{aligned}$$
(B1)

for any \(j\in [-n:n]\setminus \{0\}\), where we used

$$\begin{aligned} \frac{(n!)^2}{(n+j)!(n-j)!}=\frac{n(n-1)\cdots (n-j+1)}{(n+j)(n+j-1)\cdots (n+1)}\le 1. \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} D^{(m)}_n= & {} \sum _{j=-n}^n\left| d^{(m)}_{n,j}\right| \nonumber \\\le & {} 2\sum _{j\in [-n:n]\setminus \{0\}}\left| d^{(m)}_{n,j}\right| \nonumber \\\le & {} \sum _{j\in [-n:n]\setminus \{0\}}\frac{2m!}{|j|}\sum _{\begin{array}{c} \{l_1,\ldots ,l_{m-1}\}\in \qquad \quad \\ \mathcal {P}_{m-1}([-n:n]\setminus \{0,j\}) \end{array}} \frac{1}{|l_1\cdots l_{m-1}|} \nonumber \\\le & {} 2m!m \sum _{\begin{array}{c} \{l_1,\ldots ,l_{m}\}\in \qquad \quad \\ \mathcal {P}_{m}([-n:n]\setminus \{0\}) \end{array}} \frac{1}{|l_1\cdots l_{m}|}\nonumber \\\le & {} 2m!m\times \frac{1}{m!} \left( \frac{1}{|-n|}+\cdots +\frac{1}{|-1|}+\frac{1}{1}+\cdots +\frac{1}{n}\right) ^m\nonumber \\\le & {} 2m\left[ 2\left( 1+\log n\right) \right] ^m, \end{aligned}$$
(B2)

where the first equality follows from the definition of \(d^{(m)}_{n,0}\) in (6).

When \(m=1\), \(|a^{(1)}_{n,j}| = (n!)^2/|j|\) for \(j\in [-n:n]\setminus \{0\}\), and therefore,

$$\begin{aligned} \left| d^{(1)}_{n,j}\right| =\frac{(n!)^2}{(n+j)!(n-j)!|j|} \le \frac{1}{|j|}. \end{aligned}$$
(B3)

This leads to

$$\begin{aligned} D^{(m)}_n\le & {} 2 \sum _{j\in [-n:n]\setminus \{0\}}\left| d^{(m)}_{n,j}\right| \nonumber \\\le & {} 4\sum _{j=1}^n\frac{1}{j}\nonumber \\\le & {} 4(1+\log n), \end{aligned}$$
(B4)

which indicates that (27) holds also for \(m=1\). \(\square \)

Appendix C: Proof of Lemma 3

To prove Lemma 3, let us introduce some additional lemmas.

Lemma 4

For any \(a,x\in \mathbb {R}_+\) satisfying \(a^2\le x\),

$$\begin{aligned} x\ge a\log x \end{aligned}$$
(C1)

holds.

Proof

Consider a function \(f_a(x)=x-a\log x\) on \({\mathbb {R}}_+\). \(f_a^\prime (x)=1-\frac{a}{x}\), and therefore, it takes the minimum \(a(1-\log a)\) at \(x=a\). Then, we consider the following cases.

(i) \(a\le e\)

Since the minimum of \(f_a(x)\) is larger than 0,

$$\begin{aligned} \forall x\in \mathbb {R}_+, f_a(x)\ge 0, \end{aligned}$$
(C2)

which means (C1) holds for any \(x\in \mathbb {R}_+\).

(i) \(a> e\)

As a special case of (C2), \(f_2(y)=y-2\log y\ge 0\) holds for any \(y\in {\mathbb {R}}_+\), which indicates that \(f_a(a^2)=a(a-2\log a)\ge 0\). Besides, \(f_a^\prime (x)>0\) for any x larger than \(a^2\). Combining these, we see that, for any x larger than \(a^2\), \(f_a(x)\ge 0\) holds, and so does (C1).

Lemma 5

For any \(a\in {\mathbb {R}}_{\ge 0}\), \(x\in {\mathbb {R}}_+\), and \(\epsilon \in {\mathbb {R}}_+\) such that

$$\begin{aligned} \epsilon \le {\left\{ \begin{array}{ll} 2^{a-\left( \frac{a}{\log 2}\right) ^2} &{}; \ \mathrm{for} \ a \ge \log 2 \\ 2^{a-1} &{}; \ \mathrm{for} \ a < \log 2 \end{array}\right. } \end{aligned}$$
(C3)

and

$$\begin{aligned} x\ge \tilde{x}_{a,\epsilon }&:= \log _2\left( \frac{2^a}{\epsilon }\right) +a\log _2\left( \log _2\left( \frac{2^a}{\epsilon }\right) \right) , \end{aligned}$$
(C4)
$$\begin{aligned}&\qquad \qquad \qquad \qquad \frac{x^a}{2^x} \le \epsilon \end{aligned}$$
(C5)

holds.

Proof

When \(a=0\), (C5) becomes \(2^{-x}\le \epsilon \) and holds trivially, since (C4) becomes \(x\ge \log _2\left( \frac{1}{\epsilon }\right) \). Therefore, we consider the case where \(a>0\) below. First, note that, under the condition (C3),

$$\begin{aligned} \log _2 \left( \frac{2^a}{\epsilon }\right) \ge \left( \frac{a}{\log 2}\right) ^2 \end{aligned}$$
(C6)

holds, and this means

$$\begin{aligned} \log _2 \left( \frac{2^a}{\epsilon }\right) \ge \frac{a}{\log 2} \log \left( \log _2 \left( \frac{2^a}{\epsilon }\right) \right) = a \log _2\left( \log _2 \left( \frac{2^a}{\epsilon }\right) \right) , \end{aligned}$$
(C7)

because of Lemma 4. Then, we see that

$$\begin{aligned} \frac{(\tilde{x}_{a,\epsilon })^a}{2^{\tilde{x}_{a,\epsilon }}}= & {} \frac{\left[ \log _2 \left( \frac{2^a}{\epsilon }\right) + a \log _2\left( \log _2 \left( \frac{2^a}{\epsilon }\right) \right) \right] ^a}{\frac{2^a}{\epsilon } \left( \log _2\left( \frac{2^a}{\epsilon }\right) \right) ^a}\nonumber \\\le & {} \frac{2^a \left( \log _2 \left( \frac{2^a}{\epsilon }\right) \right) ^a}{\frac{2^a}{\epsilon } \left( \log _2\left( \frac{2^a}{\epsilon }\right) \right) ^a}\nonumber \\= & {} \epsilon , \end{aligned}$$
(C8)

where we use the definition (C4) of \(\tilde{x}_{a,\epsilon }\) at the first equality and (C7) at the inequality.

On the other hand, defining \(g(x):=\frac{x^a}{2^x}\), we obtain

$$\begin{aligned} \frac{d}{dx}\log g(x) = \frac{a}{x}-\log 2, \end{aligned}$$
(C9)

which implies that, when \(x\ge \frac{a}{\log 2}\), \(\log g(x)\) is monotonically deceasing, and so is g(x). Besides, under (C3), we can see that both

$$\begin{aligned} \log _2 \left( \frac{2^a}{\epsilon }\right) \ge 1 \end{aligned}$$
(C10)

and

$$\begin{aligned} \log _2 \left( \frac{2^a}{\epsilon }\right) \ge \frac{a}{\log 2} \end{aligned}$$
(C11)

hold by simple algebra, and therefore,

$$\begin{aligned} \tilde{x}_{a,\epsilon }=\log _2\left( \frac{2^a}{\epsilon }\right) +a\log _2\left( \log _2\left( \frac{2^a}{\epsilon }\right) \right) \ge \frac{a}{\log 2}. \end{aligned}$$
(C12)

Hence, we obtain

$$\begin{aligned} \frac{x^a}{2^x} \le \frac{(\tilde{x}_{a,\epsilon })^a}{2^{\tilde{x}_{a,\epsilon }}} \le \epsilon \end{aligned}$$
(C13)

for \(x\ge \tilde{x}_{a,\epsilon }\). \(\square \)

Now, let us prove Lemma 3.

Proof of Lemma 3

Under (28) and (30), Lemma 5 implies that

$$\begin{aligned} \frac{(2n+1)^{m\sigma ^+}}{2^{2n+1}} \le \epsilon ^\prime . \end{aligned}$$
(C14)

Then, we see that

$$\begin{aligned}&\left| R_f(x,n,m,h)h^{2n-m+1}\right| \nonumber \\&\quad \le Ac^{2n+1}\left( (2n+1)!\right) ^{\sigma }m \left( \frac{em}{2}\right) ^{2n}h^{2n-m+1} \nonumber \\&\quad \le Ac^{2n+1}\left( (2n+1)^{\sigma ^+}\right) ^{2n+1}m \left( \frac{em}{2}\right) ^{2n}h^{2n-m+1} \nonumber \\&\quad = \frac{2A}{e}\left( \frac{ecm(2n+1)^{\sigma ^+} h}{2}\right) ^{2n+1}h^{-m} \nonumber \\&\quad \le \frac{2(ecm)^mA}{e}\frac{(2n+1)^{m\sigma ^+}}{2^{2n+1}} \nonumber \\&\quad \le \frac{2(ecm)^mA}{e}\epsilon ^\prime \nonumber \\&\quad = \epsilon . \end{aligned}$$
(C15)

Here, at the first inequality, we use (25) with \(M=Ac^{2n+1}\left( (2n+1)!\right) ^{\sigma }\), since \(f\in \mathcal {G}_{A,C,\sigma }\). We also use \(((2n+1)!)^\sigma \le ((2n+1)^{\sigma ^+})^{2n+1}\) at the second inequality, (29) at the third inequality, (C14) at the fourth inequality, and (31) at the last equality. Because of Theorem 1, (C15) indicates that (32) holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, K. Quantum algorithms for numerical differentiation of expected values with respect to parameters. Quantum Inf Process 21, 109 (2022). https://doi.org/10.1007/s11128-022-03453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03453-5

Keywords

Navigation