Skip to main content
Log in

Theory of quantum games and quantum economic behavior

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quest of this work is to present discussions of some fundamental questions of economics in the era of quantum technology, which require a treatment different from economics studied thus far in the literature. A study of quantum economic behavior will become the center of attention of economists in the coming decades. We analyze a quantum economy in which players produce and consume quantum goods. They meet randomly and barter with neighbors bilaterally for quantum goods they produced. We clarify the conditions where certain quantum goods emerge endogenously as media of exchange, called quantum commodity money. As quantum strategies are entangled, we find distinctive aspects of quantum games that cannot be explained by conventional classical games. In some situations a quantum player can acquire a quantum good from people regardless of their strategies, while on the other hand people can find quantum strategies that improve their welfare based on an agreement. Those novel properties imply that quantum games also shed new light on theories of mechanism design, auction and contract in the quantum era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Here we identify \(\left| \psi \right\rangle \left\langle \psi \right| \) with \(\left| \psi \right\rangle \).

  2. In [42], the steady state of speculative equilibrium is characterized by \((p_{12},p_{23},p_{31})=\left( \frac{\sqrt{2}}{2},\sqrt{2}-1,1\right) =(0.707\cdots ,0.414\cdots ,1)\). In our setup, they are \((p_{12},p_{23},p_{31})=\left( \frac{5}{7},\frac{3}{7},1\right) =(0.714,0.428,1)\).

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Elliott, C.: Building the quantum network. New J. Phys. 4, 46–46 (2002)

    Article  ADS  Google Scholar 

  4. Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. In Donkor, E.J., Pirich, A.R., Brandt, H.E. (eds.) Quantum Information and Computation III, vol. 5815, pp. 138–149. International Society for Optics and Photonics, SPIE (2005). https://doi.org/10.1117/12.606489

  5. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., et al.: The SECOQC quantum key distribution network in vienna. New J. Phys. 11(7), 075001 (2009)

    Article  ADS  Google Scholar 

  6. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., et al.: Field test of quantum key distribution in the tokyo qkd network. Opt. Express 19(11), 10387–10409 (2011)

    Article  ADS  Google Scholar 

  7. Dynes, J., Wonfor, A., Tam, W.-S., Sharpe, A., Takahashi, R., Lucamarini, M., Plews, A., Yuan, Z., Dixon, A., Cho, J., et al.: Cambridge quantum network,. npj Quant. Inf. 5(1), 1–8 (2019)

    Article  Google Scholar 

  8. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5

    Article  ADS  Google Scholar 

  9. Debnath, S., Linke, N.M., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Demonstration of a small programmable quantum computer with atomic qubits. Nature 536(7614), 63–66 (2016)

    Article  ADS  Google Scholar 

  10. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997). arXiv: 1901.11004

  13. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  14. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P., Furusawa, A.: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500(7462), 315–318 (2013). arXiv: 1402.4895

  15. Trapani, J., Teklu, B., Olivares, S., Paris, M.G.A.: Quantum phase communication channels in the presence of static and dynamical phase diffusion. Phys. Rev. A 92, 012317 (2015). https://doi.org/10.1103/PhysRevA.92.012317

    Article  ADS  Google Scholar 

  16. Teklu, B., Genoni, M.G., Olivares, S., Paris, M.G.A.: Phase estimation in the presence of phase diffusion the qubit case. Phys. Scr. https://doi.org/10.1088/0031-8949/2010/t140/014062

  17. Adnane, H., Teklu, B., Paris, M.G.A.: Quantum phase communication channels assisted by non-deterministic noiseless amplifiers. J. Opt. Soc. Am. B 36(11), 2938–2945 (2019)

    Article  ADS  Google Scholar 

  18. Rosati, M., Mari, A., Giovannetti, V.: Coherent-state discrimination via nonheralded probabilistic amplification. Phys. Rev. A 93, 062315 (2016). https://doi.org/10.1103/PhysRevA.93.062315

    Article  ADS  Google Scholar 

  19. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  20. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, pp. 333–342 (2011)

  21. Preskill, J.: Quantum computing and the entanglement frontier, (2012) arXiv preprint arXiv:1203.5813

  22. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999). https://doi.org/10.1103/PhysRevLett.83.3077

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999). https://doi.org/10.1103/PhysRevLett.82.1052

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64(3), 030301 (2001). arXiv:quant-ph/0007038

  25. van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66(2), 024306 (2002). arXiv:quant-ph/0203133

  26. Shah Khan, F., Solmeyer, N., Balu, R., Humble, T.: Quantum games: a review of the history. In: current State, and Interpretation. arXiv:1803.07919. arXiv e-prints (2018)

  27. Morgenstern, O., Von Neumann, J.: Theory of Games and Economic Behavior. Princeton University Press, New Jersey (1953)

    MATH  Google Scholar 

  28. Aumann, R.J., Hart, S.: Handbook of Game Theory with Economic Applications, vol. 1, North-Holland Amsterdam (1992)

  29. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. tech. rep., Manubot (2019)

  30. Zhang, P., Schmidt, D.C., White, J., Lenz, G.: Chapter one - blockchain technology use cases in healthcare. In: Raj, P., Deka, G.C. (eds.) Blockchain Technology: Platforms, Tools and Use Cases, Advances in Computers, vol. 111, pp. 1–41. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  31. Banerjee, A.: Chapter three - blockchain technology: Supply chain insights from erp. In: Raj, P., Deka, G.C. (eds.) Blockchain Technology: Platforms, Tools and Use Cases, Advances in Computers, vol. 111, pp. 69–98. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  32. Ikeda, K., Hamid, M.-N.: Chapter four - applications of blockchain in the financial sector and a peer-to-peer global barter web. In: Raj, P., Deka, G.C. (eds.) Blockchain Technology: Platforms, Tools and Use Cases, Advances in Computers, vol. 111, pp. 99–120. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  33. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983). https://doi.org/10.1145/1008908.1008920

    Article  MATH  Google Scholar 

  34. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from knots. (2010) arXiv e-prints arXiv:1004.5127

  35. Ikeda, K.: Security and privacy of blockchain and quantum computation. In Advances in Computers, vol. 111, pp. 199–228. Elsevier, Amsterdam (2018)

  36. Ikeda, K.: qbitcoin: a peer-to-peer quantum cash system. In Science and Information Conference, pp. 763–771

  37. Ikeda, K.: Foundation of quantum optimal transport and applications. Quantum Inf. Process. 19(1), 25 (2019). https://doi.org/10.1007/s11128-019-2519-8

    Article  ADS  MathSciNet  Google Scholar 

  38. Ikeda, K., Aoki, S.: Repeated Quantum Games and Strategic Efficiency, arXiv e-prints (2020) arXiv:2005.05588

  39. Marx, K.: A contribution to the critique of political economy. CH Kerr (1859)

  40. Smith, A.: An inquiry into the nature and causes of the wealth of nations (1776)

  41. Jevons, W.S.: Money and the Mechanism of Exchange, vol. 17. Appleton, p. D. (1876)

    Google Scholar 

  42. Kiyotaki, N., Wright, R.: On money as a medium of exchange. J. Polit. Econ. 97(4), 927–954 (1989)

    Article  Google Scholar 

  43. Duffy, J., Ochs, J.: Emergence of money as a medium of exchange: an experimental study. Am. Econ. Rev. 89(4), 847–877 (1999)

    Article  Google Scholar 

  44. Duffy, J., Ochs, J.: Fiat money as a medium of exchange. Experimental evidence (1998)

  45. Brown, P.M.: Experimental evidence on money as a medium of exchange. J. Econ. Dyn. Control 20(4), 583–600 (1996)

    Article  Google Scholar 

  46. Marimon, R., McGrattan, E., Sargent, T.J.: Money as a medium of exchange in an economy with artificially intelligent agents. J. Econ. Dyn. Control 14(2), 329–373 (1990)

    Article  MathSciNet  Google Scholar 

  47. Kehoe, T., Kiyotaki, N., Randall, W.: More on money as a medium of exchange. Econ. Theor. 3, 297–314 (1993)

    Article  MathSciNet  Google Scholar 

  48. Cuadras-Morató, X.: Can ice cream be money?: Perishable medium of exchange. J. Econ. 66(2), 103–125 (1997). https://doi.org/10.1007/BF01234402

    Article  MATH  Google Scholar 

  49. Kawagoe, T.: Can chocolate be money as a medium of exchange? belief learning vs reinforcement learning. Evol. Inst. Econ. Rev. 5(2), 279–292 (2009). https://doi.org/10.14441/eier.5.279

    Article  Google Scholar 

  50. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996). https://doi.org/10.1103/PhysRevLett.77.793

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Gottesman, D.: Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997)

  52. Divincenzo, D.P., Shor, P.W.: Fault-Tolerant Error Correction with Efficient Quantum Codes, Phys. Rev. Lett.77(15), 3260–3263 (1996) arXiv:quant-ph/9605031

  53. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995). https://doi.org/10.1103/PhysRevA.52.R2493

    Article  ADS  Google Scholar 

  54. Raussendorf, R., Harrington, J., Goyal, K.: A fault-tolerant one-way quantum computer. Ann. Phys. 321(9), 2242–2270 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  55. Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98(19), 190504 (2007). arXiv:quant-ph/0610082

  56. Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9(6), 199 (2007). arXiv:quant-ph/0703143

  57. Dennis, E., Kitaev, A., Landahl, A., Preskill, J.: Topological quantum memory. J. Math. Phys. 43(9), 4452–4505 (2002). arXiv:quant-ph/0110143

  58. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum Random Access Memory. Phys. Rev. Lett. 100(16), 160501 (2008). arXiv:0708.1879

  59. Here we identify \(\mathinner {|{\psi }\rangle }\mathinner {\langle {\psi }|}\) with \(\left|\psi \right\rangle \)

  60. In [42], the steady state of speculative equilibrium is characterized by \((p_{12},p_{23},p_{31})=\left(\frac{\sqrt{2}}{2},\sqrt{2}-1,1\right)=(0.707\cdots ,0.414\cdots ,1)\). In our setup, they are \((p_{12},p_{23},p_{31})=\left(\frac{5}{7},\frac{3}{7},1\right)=(0.714,0.428,1)\)

  61. Werner, R.F.: Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989). https://doi.org/10.1103/PhysRevA.40.4277

    Article  ADS  MATH  Google Scholar 

  62. Phoenix, S., Khan, F., Teklu, B.: Preferences in quantum games. Phys. Lett. A 384(15), 126299 (2020)

    Article  MathSciNet  Google Scholar 

  63. Gudder, S.P.: Quantum Probability. Academic Press, Cambridge (1988). (Reprint 2014)

  64. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993). https://doi.org/10.1103/PhysRevA.48.1687

    Article  ADS  Google Scholar 

  65. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996). arXiv:quant-ph/9604003

  66. Ikeda, K.: Quantum contracts between schrödinger and a cat. Quantum Inf. Process. 20(9), 313 (2021). https://doi.org/10.1007/s11128-021-03252-4

    Article  ADS  Google Scholar 

  67. Grossman, S.J., Hart, O.D.: The costs and benefits of ownership: a theory of vertical and lateral integration. J. Polit. Econ. 94(4), 691–719 (1986)

    Article  Google Scholar 

  68. Hart, O., Moore, J.: Incomplete contracts and renegotiation. Econometrica 56(4), 755–785 (1988)

    Article  MathSciNet  Google Scholar 

  69. Maskin, E., Tirole, J.: Unforeseen contingencies and incomplete contracts. Rev. Econ. Stud. 66(1), 83–114 (1999)

    Article  MathSciNet  Google Scholar 

  70. Matsuyama, K., Kiyotaki, N., Matsui, A.: Toward a theory of international currency. Rev. Econ. Stud. 60(2), 283–307 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Avi Beracha for carefully reading the manuscript. This work was supported by PIMS Postdoctoral Fellowship Award (K.I.).

Author information

Authors and Affiliations

Authors

Contributions

K.I. designed and performed the research, interpreted the results, and wrote the paper. S.A. helped with the calculations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, K., Aoki, S. Theory of quantum games and quantum economic behavior. Quantum Inf Process 21, 27 (2022). https://doi.org/10.1007/s11128-021-03378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03378-5

Keywords

Navigation