Skip to main content
Log in

Mutually unbiased measurements with arbitrary purity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Mutually unbiased measurements are a generalization of mutually unbiased bases in which the measurement operators need not to be rank one projectors. In a d-dimensional space, the purity of measurement elements ranges from 1/d for the measurement operators corresponding to maximally mixed states to 1 for the rank one projectors. In this contribution, we provide a class of MUM that encompasses the full range of purity. Similar to the MUB in which the operators corresponding to different outcomes of the same measurement commute mutually, our class of MUM possesses this sense of compatibility within each measurement. The spectra of these MUMs provide a way to construct a class of d-dimensional orthogonal matrices which leave the vector of equal components invariant. Based on this property, and by using the MUM-based entanglement witnesses, we examine the minimal number of measurements needed to detect entanglement of bipartite states. For a general bipartite pure state, we need only two MUMs: The first one assigns a zero mean value for all pure states; however, a complementary measurement is needed to give a negative mean value for entangled states. Interestingly, the amount of this negative value is proportional to an entanglement monotone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. USA 46, 570 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  2. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. (NY) 191, 363 (1989)

  3. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A: Math. Gen. 14, 3241 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. Klappenecker, A., Rötteler, M.: Mutually unbiased bases are complex projective 2-designs. Proc. Int. Symp. Inf. Theory. 1740-4 (2005)

  5. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A. 54, 1862 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  8. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  9. Adamson, R.B.A., Steinberg, A.M.: Improving quantum state estimation with mutually unbiased bases. Phys. Rev. Lett. 105, 030406 (2010)

    Article  ADS  Google Scholar 

  10. Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A. 86, 022311 (2012)

    Article  ADS  Google Scholar 

  11. Englert, B.-G., Aharonov, Y.: The mean king‘s problem: prime degrees of freedom. Phys. Lett. A. 284, 1 (2001)

  12. Aravind, P.K.: Solution to the king’s problem in prime power dimensions. Z. Naturforsch. 58a, 85 (2003)

  13. Butterley, P., Hall, W.: Numerical evidence for the maximum number of mutually unbiased bases in dimension six. Phys. Lett. A. 369, 5 (2007)

    Article  ADS  Google Scholar 

  14. Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J Quantum Inf. 8, 535 (2010)

    Article  Google Scholar 

  15. Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. New J. Phys. 16, 053038 (2014)

    Article  ADS  Google Scholar 

  16. Graydon, M.A., Appleby, D.M.: Quantum conical designs. J. Phys. A: Math. Theor. 49, 085301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bransden, S., Arno, M.D., Szymusiak, A.: Communication capacity of mixed quantum t-designs. Phys. Rev. A. 94, 022335 (2016)

    Article  ADS  Google Scholar 

  18. Bengtsson, I., Życzkowski, K.: Geometry of quantum states: An introdunction to quantum entanglement. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  19. Chen, B., Ma, T., Fei, S.-M.: Mutually unbiased measurement based entanglement witnesses. Phys. Rev. A. 6, 064302 (2014)

    Article  ADS  Google Scholar 

  20. Chruściński, D., Sarbicki, G., Wudarski, F.: Entanglement witnesses from mutually unbiased bases. Phys. Rev. A. 97, 032318 (2018)

    Article  ADS  Google Scholar 

  21. Li, T., Lai, L., Fei, S., Wang, Z.: Mutually unbiased measurement based entanglement witnesses. Int. J. Theor. Phys. 58, 3973–3985 (2019)

    Article  MathSciNet  Google Scholar 

  22. Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C., Krammer, P.: Optimal entanglement witnesses for qubits and qutrits. Phys. Rev. A. 72, 052331 (2005)

    Article  ADS  Google Scholar 

  23. Moreno, M.G.M., Fernando Parisio: All bipartitions of arbitrary Dicke states. arXiv: 1801.00762 (2018)

Download references

Acknowledgements

The authors would like to thank Fereshte Shahbeigi for helpful discussion and comments. This work was supported by Ferdowsi University of Mashhad under Grant No. 3/47501 (1397/6/27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Javad Akhtarshenas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The number of independent eigenvalues

Appendix A: The number of independent eigenvalues

To count the number of independent eigenvalues, we have to find the number of independent constraints on the set of eigenvalues. Clearly, Eq. (12) gives one independent relation. Equation (13), on the other hand, reads

$$\begin{aligned} \sum _{j=0}^{d-1} \mu ^2_{n\oplus j}=\kappa -1/d, \end{aligned}$$
(A1)

for \(n=n^\prime \), and

$$\begin{aligned} \sum _{j=0}^{d-1} \mu _{n\oplus j}\mu _{n^\prime \oplus j}=-\left( \frac{\kappa -1/d}{d-1}\right) , \end{aligned}$$
(A2)

for \(n\ne n^\prime \). Equation (A1) gives its own independent relation; however, Eq. (A2) provides independent relations only for \(n^\prime =n\oplus 1,n\oplus 2,\cdots ,n\oplus \left\lfloor d/2\right\rfloor \), where \(\left\lfloor d/2\right\rfloor \) denotes the integral part of d/2, i.e., \(\left\lfloor d/2\right\rfloor =d/2\) if d is even and \(\left\lfloor d/2\right\rfloor =(d-1)/2\) if d is odd. This follows from the fact the LHS of this equation is invariant under the change \(\{n \rightarrow n+n_0,\; n^\prime \rightarrow n^\prime +n_0\}\) for any \(n_0=0,\cdots d-1\). For \(n^\prime =1,\cdots ,\left\lfloor (d-1)/2\right\rfloor \), the multiplicity is d; however, for \(n^\prime =d/2\) (when d is even) the corresponding multiplicity is d/2. There is, however, a relation between Eqs. (A1) and (A2), following easily from

$$\begin{aligned} 2\sum _{n<n^\prime }^{d-1} \mu _{n}\mu _{n^\prime }=\left( \sum _{n=0}^{d-1} \mu _{n}\right) ^2-\sum _{n=0}^{d-1} \mu ^2_{n}=-\left( \kappa -1/d\right) , \end{aligned}$$
(A3)

which, using the multiplicity of each term, can be written as

$$\begin{aligned} d\sum _{i=1}^{\left\lfloor \frac{d-1}{2}\right\rfloor }\left[ \sum _{j=0}^{d-1} \mu _{n\oplus j}\mu _{n\oplus i+ j}\right] +\frac{d}{2}\mathcal {E}=-\frac{1}{2}\left( \kappa d-1\right) . \end{aligned}$$
(A4)

Above \(\mathcal {E}=\sum _{j=0}^{d-1} \mu _{n\oplus j}\mu _{n\oplus d/2+ j}\) if d is even and it is zero if d is odd. Putting everything together, we find the number of independent eigenvalues as \(N=d-(2+\left\lfloor d/2\right\rfloor -1)=\left\lfloor \frac{d-1}{2}\right\rfloor \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Akhtarshenas, S.J., Sarbishaei, M. et al. Mutually unbiased measurements with arbitrary purity. Quantum Inf Process 20, 401 (2021). https://doi.org/10.1007/s11128-021-03340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03340-5

Keywords

Navigation