Skip to main content
Log in

Quantum walks on Sierpinski gasket and Sierpinski tetrahedron

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate discrete-time coined quantum walks on the Sierpinski gasket and the Sierpinski tetrahedron which have non-integer dimensions, by concentrating on the probability distribution, return probability and standard deviation. We compare the calculating results with classical random walks on the two fractal structures and quantum walks on the corresponding regular triangle grids. For the quantum walks, we adopt DFT coin and Grover coin, respectively, which exhibit great differences on the above quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-Dimensional Quantum Walks. STOC ‘01, Hersonissos, Greece, pp. 37-49. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/380752.380757

  2. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum Walks on Graphs. In: Proc. 33rd STOC, Hersonissos, Greece, STOC ‘01, pp. 50–59. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/380752.380758

  3. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential Algorithmic Speedup by a Quantum Walk. In: Proc. 35th ACM Symposium on Theory of Computing. STOC ‘03, San Diego, CA, USA, pp. 59-68. Association for Computing Machinery, New York (2003). https://doi.org/10.1145/780542.780552

  4. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993). https://doi.org/10.1103/PhysRevA.48.1687

    Article  ADS  Google Scholar 

  5. Machida, T., Chandrashekar, C.M.: Localization and limit laws of a three-state alternate quantum walk on a two-dimensional lattice. Phys. Rev. A 92, 062307 (2015). https://doi.org/10.1103/PhysRevA.92.062307

    Article  ADS  Google Scholar 

  6. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307 (2003)

    Article  ADS  Google Scholar 

  7. Baryshnikov, Y., Brady, W., Bressler, A., Pemantle, R.: Two-dimensional quantum random walk. J. Stat. Phys 142(1), 78 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Patel, A., Raghunathan, K.S.: Search on a fractal lattice using a quantum random walk. Phys. Rev. A 86, 012332 (2012). https://doi.org/10.1103/PhysRevA.86.012332

    Article  ADS  Google Scholar 

  9. Tamegai, S., Watabe, S., Nikuni, T.: Spatial search on Sierpinski carpet using quantum walk. J. Phys. Soc. Jpn. 87(8), 085003 (2018). https://doi.org/10.7566/JPSJ.87.085003

    Article  ADS  Google Scholar 

  10. Sato, R., Nikuni, T., Watabe, S.: Scaling hypothesis of a spatial search on fractal lattices using a quantum walk. Phys. Rev. A 101, 022312 (2020). https://doi.org/10.1103/PhysRevA.101.022312

    Article  ADS  MathSciNet  Google Scholar 

  11. Rammal, R., Toulouse, G.: Random walks on fractal structures and percolation clusters. J. Physique Lett. 44(1), 13–22 (1983). https://doi.org/10.1051/jphyslet:0198300440101300

  12. O’Shaughnessy, B., Procaccia, I.: Diffusion on fractals. Phys. Rev. A 32, 3073 (1985). https://doi.org/10.1103/PhysRevA.32.3073

    Article  ADS  MathSciNet  Google Scholar 

  13. Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  14. Zhang, J.: Fractal. Tsinghua University Press, Beijing (1995)

    Google Scholar 

  15. Balankin, A.S.: Effective degrees of freedom of a random walk on a fractal. Phys. Rev. E 92, 062146 (2015). https://doi.org/10.1103/PhysRevE.92.062146

    Article  ADS  MathSciNet  Google Scholar 

  16. Lara, P.C.S., Portugal, R., Bottcher, S.: Quantum walks on Sierpinski gaskets. Int. J. Quantum Inf. 11(08), 1350069 (2013). https://doi.org/10.1142/S021974991350069X

    Article  MathSciNet  MATH  Google Scholar 

  17. Ambainis, A., Kempe, J., Rivosh, A.: Coins Make Quantum Walks Faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’05, Vancouver, British Columbia, pp. 1099-1108. Society for Industrial and Applied Mathematics, USA (2005)

  18. Lovett, N.B., Everitt, M., Trevers, M., Mosby, D., Stockton, D., Kendon, V.: Spatial search using the discrete time quantum walk. Nat. Comput. 11(1), 23 (2012)

    Article  MathSciNet  Google Scholar 

  19. Abal, G., Siri, R., Romanelli, A., Donangelo, R.: Quantum walk on the line: entanglement and nonlocal initial conditions. Phys. Rev. A 73, 042302 (2006). https://doi.org/10.1103/PhysRevA.73.042302

    Article  ADS  MathSciNet  Google Scholar 

  20. Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004). https://doi.org/10.1103/PhysRevA.69.052323

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Mo Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, HH., Zeng, GM. Quantum walks on Sierpinski gasket and Sierpinski tetrahedron. Quantum Inf Process 20, 240 (2021). https://doi.org/10.1007/s11128-021-03171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03171-4

Keywords

Navigation