Skip to main content
Log in

Effect of partial-collapse measurement on quantum entanglement in noninertial frames

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An efficient method is proposed to improve two-qubit entanglement under the action of noise channel in noninertial frames by using partial-collapse measurement. We focus on the influence of partial-collapse measurement on entanglement for different noise channels in noninertial frames. It is shown that entanglement can be enhanced greatly for phase-flip, phase-damping, depolarizing and amplitude-damping channels. We obtain the optimal concurrence for the four noise channels, respectively. Moreover, ’entanglement sudden death’ can be avoided for amplitude-damping environment. Our work provides a novel method to improve quantum entanglement under both noise environment and Unruh effect and exhibits the ability of partial-collapse measurement as an important technique in relativistic quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bombelli, L., Koul, R., Lee, K.J., Sorkin, R.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. Callan, C., Wilzcek, F.: On geometric entropy. Phys. Lett. B 333, 55 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  4. Terashima, H.: Entanglement entropy of the black hole horizon. Phys. Rev. D 61, 104016 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Adesso, G., Fuentes-Schuller, I., Ericsson, M.: Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320 (2010)

    Article  ADS  Google Scholar 

  8. Ostapchuk, D.C.M., Mann, R.B.: Generating entangled fermions by accelerated measurements on the vacuum. Phys. Rev. A 79, 042333 (2009)

    Article  ADS  Google Scholar 

  9. Wang, J., Pan, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime. Ann. Phys. 325, 1190 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Khan, S., Khan, M.K.: Open quantum systems in noninertial frames. J. Phys. A: Math. Theor. 44, 45305 (2011)

    Article  MathSciNet  Google Scholar 

  11. Zhou, J., Shi, R.H., Guo, Y.: Squeezed-state quantum key distribution with a Rindler observer. Quant. Inf. Process. 17(3), 47 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  13. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)

    Article  ADS  Google Scholar 

  14. Dong, Q., Torres-Arenas, A.J., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys. 14(2), 21603 (2019)

    Article  Google Scholar 

  15. Qiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quant. Inf. Process. 18, 314 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Torres-Arenasa, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B. 789, 93–C105 (2019)

    Article  ADS  Google Scholar 

  17. Rideout, D., et al.: Fundamental quantum optics experiments conceivable with satellites-reaching relativistic distances and velocities. Class. Quant. Gravit. 29, 224011 (2012)

    Article  ADS  Google Scholar 

  18. Friis, N., Lee, A.R., Truong, K., Sabin, C., Solano, E., Johansson, G., Fuentes, I.: Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)

    Article  ADS  Google Scholar 

  19. Ahmadzadegan, A., Martín-Martínez, E., Mann, R.B.: Cavities in curved spacetimes: the response of particle detectors. Phys. Rev. D 89, 024013 (2014)

    Article  ADS  Google Scholar 

  20. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  21. Aharonov, Y., Botero, A., Pospescu, S., Reznik, B., Tollaksen, J.: Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A 301, 130 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett. 102, 020404 (2009)

    Article  ADS  Google Scholar 

  23. Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys. 11, 033011 (2009)

    Article  ADS  Google Scholar 

  24. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  25. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  26. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  27. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  28. Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  29. Liao, X.P., Ding, X.Z., Fang, M.F.: Improving the payoffs of cooperators in three-player cooperative game using weak measurements. Quant. Process 14, 4395 (2015)

    Article  MathSciNet  Google Scholar 

  30. Liao, X.P., Fang, M.F., Fang, J.S., Zhu, Q.Q.: Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement. Chin. Phys. B 23, 020304 (2014)

    Article  ADS  Google Scholar 

  31. Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    Article  ADS  Google Scholar 

  32. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  33. Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)

    Article  ADS  Google Scholar 

  34. Xiao, X., Xie, Y.M., Yao, Y., Li, Y.L., Wang, J.C.: Retrieving the lost fermionic entanglement by partial measurement in noninertial frames. 12 Feb (2017). arXiv:1702.03508v1 [quant-ph]

  35. Sun, W.Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quant. Inf. Process. 16, 90 (2017)

    Article  ADS  Google Scholar 

  36. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  37. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett 80, 2245 (1998)

    Article  ADS  Google Scholar 

  38. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett 78, 5022 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.11374096), the Natural Science Foundation of Hunan Province of China (Grant No. 2016JJ2044) and the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 16A057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ping Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, XP., Wen, W., Rong, MS. et al. Effect of partial-collapse measurement on quantum entanglement in noninertial frames. Quantum Inf Process 19, 106 (2020). https://doi.org/10.1007/s11128-020-2600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2600-3

Keywords

Navigation