Skip to main content
Log in

High-capacity measurement-device-independent quantum secure direct communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As an important branch of quantum communication, quantum secure direct communication (QSDC) can directly transmit secure information between two communication parties without keys. Measurement-device-independent quantum secure direct communication (MDI–QSDC) is immune to all the attacks at detector’s side and thus can eliminate the security loopholes associated with measurement devices. Existing MDI–QSDC protocols encode secure information in only one degree of freedom (DOF) of photons. In this paper, we propose a high-capacity MDI–QSDC protocol by encoding secure information in photons’ polarization and spatial-mode DOFs. With hyper-encoding in two DOFs, we can double photons’ channel capacity and effectively increase MDI–QSDC’s communication efficiency. Moreover, for each encoded qudit, the states in two DOFs are totally independent. If a detection failure or error occurs on one DOF, the state in the other DOF can still be used to transmit secure information. This hyper-encoding MDI–QSDC may have potential applications in future quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, (India IEEE, New York), pp. 175–179. (1984)

  2. Ekert, A.K.: Quantum crytography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    MathSciNet  MATH  ADS  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    MathSciNet  MATH  ADS  Google Scholar 

  4. Xu, F.H., Ma, X.F., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)

    MathSciNet  ADS  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  7. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    ADS  Google Scholar 

  8. Wang, C., Deng, F.G., Li, Y.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    ADS  Google Scholar 

  9. Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    ADS  Google Scholar 

  10. Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quan. Inform. Process. 17, UNSP 152 (2018)

  11. Gu, J., Lin, P.H., Hwang, T.: Double C-NOT attack and counterattack on ’Three-step semi-quantum secure direct communication protocol’. Quan. Inform. Process. 17, UNSP 182 (2018)

  12. He, R., Ma, J.G., Wu, J.W.: A quantum secure direct communication protocol using entangled beam pairs. EPL 127, 50006 (2019)

    ADS  Google Scholar 

  13. He, Y.F., Ma, W.P.: Multiparty quantum secure direct communication immune to collective noise. Quan. Inform. Process. 18, 4 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  14. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Google Scholar 

  15. Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    ADS  Google Scholar 

  16. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)

    Google Scholar 

  17. Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quan. Eng. 1, e26 (2019)

    Google Scholar 

  18. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New. J. Phys. 22, 063017 (2020)

    MathSciNet  ADS  Google Scholar 

  19. Hu, J.Y., Yang, L., Wu, S.X., et al.: Security proof of the two-way quantum secure direct communication with channel loss and noise. EPL 129, 10004 (2020)

    ADS  Google Scholar 

  20. Hu, J.Y., Yu, B., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Google Scholar 

  21. Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    ADS  Google Scholar 

  22. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)

    Google Scholar 

  23. Qi, R.Y., Sun, Z., Lin, Z.S., Niu, P.H., Hao, W.T., Song, L.Y., Huang, Q., Gao, J.C., Yin, L.G., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22 (2019)

    ADS  Google Scholar 

  24. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Google Scholar 

  25. Makarov, V., Hjelme, D.R.: Faked states attack on quantum crytosystems. J. Mod. Opt. 52, 691–705 (2005)

    ADS  Google Scholar 

  26. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)

    ADS  Google Scholar 

  27. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.F.: Time-shifted attack in pratical quantum cryptosystems. Quan. Inform. Comput. 7, 73–82 (2007)

    MATH  Google Scholar 

  28. Liu, Y., Chen, T.Y., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    ADS  Google Scholar 

  29. Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)

    ADS  Google Scholar 

  30. Yin, Z.Q., Fung, C.H.F., Ma, X.F., et al.: Measurement-device-independent quantum key distribution with uncharacterized qubit sources. Phys. Rev. A 88, 062322 (2013)

    ADS  Google Scholar 

  31. Tang, Z.Y., Liao, Z.F., Xu, F.H., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    ADS  Google Scholar 

  32. Tang, Z.Y., Yin, H.L., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014)

    ADS  Google Scholar 

  33. Yin, H.L., Chen, T.Y., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    ADS  Google Scholar 

  34. Xu, F.H., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15, 113007 (2013)

    ADS  Google Scholar 

  35. Curty, M., Xu, F.H., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    ADS  Google Scholar 

  36. Wang, C., Song, X.T., Yin, Z.Q., Wang, S., Chen, W., Zhang, C.M., Guo, G.C., Han, Z.F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)

    ADS  Google Scholar 

  37. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)

    ADS  Google Scholar 

  38. Wang, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016–1023 (2017)

    ADS  Google Scholar 

  39. Li, C.Y.: Fault-tolerant measurement-device-independent quantum key distribution in a decoherence-free subspace. Quan. Inform. Process. 17, UNSP 287 (2018)

  40. Jiang, C., Yu, Z.W., Wang, X.B.: Measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Phys. Rev. A 97, 042331 (2018)

    ADS  Google Scholar 

  41. Hu, X.L., Yu, Z.W., Wang, X.B.: Efficient measurement-device-independent quantum key distribution without vacuum sources. Phys. Rev. A 98, 032303 (2018)

    ADS  Google Scholar 

  42. Dong, C., Li, W., Che, Y.L., Qing, P., Shi, L.: Reference-frame-independent measurement-device-independent quantum key distribution using hybrid logical basis. Quan. Inform. Process. 17, UNSP 256 (2018)

  43. Ma, X.F., Zeng, P., Zhou, H.Y.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)

    Google Scholar 

  44. Cui, Z.X., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019)

    ADS  Google Scholar 

  45. Kang, G.D., Zhou, Q.P., Fang, M.F.: Measurement-device-independent quantum key distribution with uncharacterized coherent sources. Quan. Inform. Process. 19, 1 (2019)

    MathSciNet  ADS  Google Scholar 

  46. Guo, Y., Cheng, S.M., Hu, X.M., et al.: Experimental measurement-device-independent quantum steering and randomness generation beyond qubits. Phys. Rev. Lett. 123, 170402 (2019)

    ADS  Google Scholar 

  47. Wu, X.D., Wang, Y.J., Huang, D., Guo, y: Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation. Front. Phys. 15, 31601 (2020)

    ADS  Google Scholar 

  48. Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G., Long, G.L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345–1350 (2018)

    Google Scholar 

  49. Gao, Z.K., Li, T., Li, Z.H.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125, 40004 (2019)

    ADS  Google Scholar 

  50. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    Google Scholar 

  51. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    ADS  Google Scholar 

  52. Erhard, M., Krenn, M., Zeilinger, A.: Advanced in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020)

    Google Scholar 

  53. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    ADS  Google Scholar 

  54. van Loock, P.: Optical hybrid approaches to quantum information. Laser Photon. Rev. 5, 167 (2011)

    ADS  Google Scholar 

  55. Zhang, W.J., You, L.X., Li, H., et al.: NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China-Phys. Mech. Astron. 60, 120314 (2017)

    Google Scholar 

  56. Wei, T.C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled Bell-state analysis. Phys. Rev. A 75, 060305(R) (2007)

    MathSciNet  ADS  Google Scholar 

  57. Li, X.H., Gohse, S.: Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement. Opt. Express 24, 18388–18398 (2016)

    ADS  Google Scholar 

  58. Wang, G.Y., Reng, B.C., Deng, F.G., Long, G.L.: Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement. Opt. Express 27, 8994–9003 (2019)

    ADS  Google Scholar 

  59. Liu, Q., Wang, G.Y., Ai, Q., Zhang, M., Deng, F.G.: Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6, 22016 (2016)

    ADS  Google Scholar 

  60. Wang, M.Y., Yan, F.L., Gao, T.: Deterministic state analysis for polarization-spatial-time-bin hyperentanglement with nonlinear optics. Laser Phys. Lett. 15, 125206 (2018)

    ADS  Google Scholar 

  61. Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93, 022302 (2016)

    ADS  Google Scholar 

  62. Zhu, S., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement of the concurrence of arbitrary two-photon six-qubit hyperentangled state. EPL 129, 50004 (2020)

    ADS  Google Scholar 

  63. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    ADS  Google Scholar 

  64. Zhu, C., Huang, G.: Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures. Opt. Express 19, 23364–23376 (2011)

    ADS  Google Scholar 

  65. Hoi, I.C., Kockum, A.F., Palomaki, T., et al.: Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013)

    ADS  Google Scholar 

  66. He, B., Sharypov, A.V., Sheng, J., Simon, C., Xiao, M.: Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014)

    ADS  Google Scholar 

  67. Beck, K.M., Hosseini, M., Duan, Y.H., Vuletić, V.: Large conditional single-photon cross-phase modulation. PNAS 113, 9740–9744 (2016)

    ADS  Google Scholar 

  68. Tiarks, D., Schmidt, S., Rempe, G., Dürr, S.: Optical \(\pi \) phase shift created with a single-photon pulse. Sci. Adv. 2, e1600036 (2016)

    Google Scholar 

  69. Sinclair, J., Angulo, D., Lupu-Gladstein, N., Bonsma-Fisher, K., Steinberg, A.M.: Observation of a large, resonant, cross-Kerr nonlinearity in a free-space Rydberg medium. arXiv:1906.05151v1 (2019)

  70. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)

    ADS  Google Scholar 

  71. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete anaysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    ADS  Google Scholar 

  72. Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444–28458 (2016)

    ADS  Google Scholar 

  73. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91, 062321 (2015)

    ADS  Google Scholar 

  74. Wang, T.J., Wang, C.: Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level \(\Lambda \)-type system. Sci. Rep. 6, 19497 (2016)

    Google Scholar 

  75. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., et al.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11974189, the China Postdoctoral Science Foundation under Grant No. 2018M642293, the open research fund of the Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education under Grant No. JZNY201908, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province under No. KYCX18\(_{-}\)0914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XD., Zhou, L., Zhong, W. et al. High-capacity measurement-device-independent quantum secure direct communication. Quantum Inf Process 19, 354 (2020). https://doi.org/10.1007/s11128-020-02864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02864-6

Keywords

Navigation