Skip to main content
Log in

New quantum codes from constacyclic and additive constacyclic codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Let p be a prime and \(q=p^r\), for an integer \(r\ge 1\). This article studies \(\lambda =(\lambda _1+u\lambda _2+v\lambda _3)\)-constacyclic codes of length n over a class of finite commutative non-chain rings \(R={\mathbb {F}}_q[u,v]/\langle u^2-\gamma u,v^2-\delta v,uv=vu=0\rangle \), where \(\gamma ,\delta \in {\mathbb {F}}_q^{*}\). First, we decompose \((\lambda _1+u\lambda _2+v\lambda _3)\)-constacyclic code into the direct sum of \(\lambda _1\)-constacyclic, \((\lambda _1+\gamma \lambda _2)\)-constacyclic and \((\lambda _1+\delta \lambda _3)\)-constacyclic codes over \({\mathbb {F}}_q\), respectively. Then, we determine the necessary and sufficient condition for these codes to contain their Euclidean duals. Further, we extend the study to \({\mathbb {F}}_qR\)-additive \(\lambda \)-constacyclic codes of length (nm) which are R[x]-submodules of \(S_{n,m}={\mathbb {F}}_q[x]/\langle x^n-1\rangle \times R[x]/\langle x^m-\lambda \rangle \). Apart from other results, we also discuss the dual-containing separable \({\mathbb {F}}_qR\)-additive \(\lambda \)-constacyclic codes. Finally, by using the CSS construction on the Gray images of these codes, we obtain many new and better quantum codes that improve on the known existing quantum codes available in recent articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkenani, A. N., Ashraf, M., Mohammad, G.: Quantum codes from the constacyclic codes over the ring \(\mathbb{F}_{q}[u_1,u_2]/\langle u_1^{2}-u_1,u_2^{2}-u_2,u_1u_2-u_2u_1\rangle \). Mathematics 8(5), 781: https://doi.org/10.3390/math8050781 (2020)

  2. Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(\mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q + uv\mathbb{F}_q\). Quantum Inf. Process. 15(10), 4089–4098 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ashraf, M., Mohammad, G.: Quantum codes over \(\mathbb{F}_{p}\) from cyclic codes over \(\mathbb{F}_{p}[u, v]/\langle u^{2}-1, v^{3}-v, uv-vu\rangle \). Cryptogr. Commun. 11(2), 325–335 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aydin, N., Abualrub, T.: Optimal quantum codes from additive skew cyclic codes. Discrete Math. Algorithms Appl. 8(3), 1650037 9 pp (2016)

  5. Aydogdu, I., Abualrub, T.: Self-Dual Cyclic and Quantum Codes Over \(\mathbb{Z}\mathit{_2\times (\mathbb{Z}}_2+u\mathbb{Z}_2)\). Discrete Math. Algorithms Appl. 11(4), 1950041 15 pp (2019)

  6. Aydogdu, I., Abualrub, T., Siap, I.: \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-Cyclic and Constacyclic Codes. IEEE Trans. Inform. Theory. 63(8), 4883–4893 (2016)

    Article  MATH  Google Scholar 

  7. Borges, J., Fernandez-Cordoba, C., Pujol, J., Rifa, J., Villanueva, M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: Generator matrices and duality. Designs Codes Cryptogr. 54(2), 167–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bosma, W., Cannon, J.: Handbook of Magma Functions. Univ. of Sydney (1995)

  9. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delsarte, P., Levenshtein, V.I.: Association schemes and coding theory. IEEE Trans. Inform. Theory 44, 2477–2504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). Int. J. Quantum Inf. 13(3), 1550031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diao, L., Gao, J.: \(\mathbb{Z}_p\mathbb{Z}_p[u]\)-additive cyclic codes. Int. J. Inf. Coding Theory 5(1), 1–17 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diao, L., Gao, J., Lu, J.: Some results on \(\mathbb{Z}_p\mathbb{Z}_p[v]\)-additive cyclic codes. Adv. Math. Commun. (2019). https://doi.org/10.3934/amc.2020029

    Article  Google Scholar 

  15. Dinh, H.Q., Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G.: Quantum codes from a class of constacyclic codes over finite commutative rings. J. Algebra Appl. (2019). https://doi.org/10.1142/S0219498821500031

    Article  Google Scholar 

  16. Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html

  17. Gao, J., Wang, Y.: \(u\)-Constacyclic codes over \(\mathbb{F}\mathit{_p + u\mathbb{F}}_p\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17(1), 9 pp (2018)

  18. Gao, Y., Gao, J., Fu, F.W.: On Quantum codes from cyclic codes over the ring \(\mathbb{F}_{q} +v_1\mathbb{F}_{q}+\dots +v_r\mathbb{F}_{q}\). Appl. Algebra Engrg. Comm. Comput. 30(2), 161–174 (2019)

    Article  MathSciNet  Google Scholar 

  19. Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2, 55–64 (2004)

    Article  MATH  Google Scholar 

  20. Islam, H., Prakash, O., Verma, R.K.: New quantum codes from constacyclic codes over the ring \(R_{k, m}\). Adv. Math. Commun. (2020). https://doi.org/10.3934/amc.2020097

    Article  Google Scholar 

  21. Islam, H., Prakash, O., Solé, P.: \(\mathbb{Z}_4\mathbb{Z}_4[u]\)-additive cyclic and constacyclic codes. Adv. Math. Commun. (2020). https://doi.org/10.3934/amc.2020094

    Article  Google Scholar 

  22. Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \(\mathbb{F}_{p}[u, v, w]/\langle u^2-1, v^2-1, w^2-1, uv-vu, vw-wv, wu-uw\rangle \). J. Appl. Math. Comput. 60(1–2), 625–635 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Islam, H., Prakash, O., Bhunia, D.K.: Quantum codes obtained from constacyclic codes. Internat. J. Theoret. Phys. 58(11), 3945–3951 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Islam, H., Prakash, O., Verma, R.K.: Quantum codes from the cyclic codes over \(\mathbb{F}_{p}[v, w]/\langle v^{2}-1, w^{2}-1, vw-wv\rangle \). Springer Proceedings in Mathematics & Statistics 307, 67–74 (2019). https://doi.org/10.1007/978-981-15-1157-8-6

    Article  MATH  Google Scholar 

  25. Islam, H., Prakash, O., Verma, R.K.: A family of constacyclic codes over \(\mathbb{F}_{p^m}[v, w]/\langle v^{2}-1, w^{2}-1, vw-wv\rangle \). Int. J. Inf. Coding Theory (2020). https://doi.org/10.1504/IJICOT.2019.10026515

    Article  MATH  Google Scholar 

  26. Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F}_{4}+u\mathbb{F}_{4}\). Int. J. Quantum Inf. 9, 689–700 (2011)

    Article  MathSciNet  Google Scholar 

  27. Li, J., Gao, J., Fu, F.W., Ma, F.: \(\mathbb{F}_qR\)-linear skew constacyclic codes and their application of constructing quantum codes. Quantum Inf. Process (2020). https://doi.org/10.1007/s11128-020-02700-x

    Article  MathSciNet  Google Scholar 

  28. Ma, F., Gao, J., Fu, F. W.: Constacyclic codes over the ring \(\mathbb{F}\mathit{_{p} +v\mathbb{F}}_{p}+v^{2}\mathbb{F}_{p}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process, 17 (6), 19 pp. Art. 122 (2018)

  29. Ma, F., Gao, J., Fu, F.W.: New non-binary quantum codes from constacyclic codes over \(\mathbb{F}_{q}[u, v]/\langle u^2-1, v^2-v, uv-vu\rangle \). Adv. Math. Commun. 13(2), 421–434 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ozen, M., Ozzaim, N.T., Ince, H.: Skew quasi cyclic codes over \(\mathbb{F}_q+v\mathbb{F}_q\). J. Algebra Appl. 18(4), 1950077 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qian, J.: Quantum codes from cyclic codes over \(\mathbb{F}_2+v\mathbb{F}_2\). J. Inf. Compt. Sci. 10, 1715–1722 (2013)

    Article  Google Scholar 

  32. Rifa-Pous, H., Rifa, J., Ronquillo, L.: \(\mathbb{Z}_2\mathbb{Z}_4\)-Additive Perfect Codes in Steganography. Adv. Math. Commun. 5(3), 425–433 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sari, M., Siap, I.: On quantum codes from cyclic codes over a class of nonchain rings. Bull. Korean Math. Soc. 53(6), 1617–1628 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shi, M., Wu, R., Krotov, D.S.: On \(\mathbb{Z}_p\mathbb{Z}_{p^k}\)-additive codes and their duality. IEEE Trans. Inform. Theory 65(6), 3841–3847 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shor, P.W.: Scheme for reducing decoherence in quantum memory Phys. Rev. A. 52, 2493–2496 (1995)

    Article  Google Scholar 

  36. Shor, P. W.: Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124–134. (1994). https://doi.org/10.1109/sfcs.1994.365700

Download references

Acknowledgements

The authors are thankful to the University Grants Commission (UGC), Govt. of India, for financial supports under Sr. No. 2121540952, Ref. No. 20/12/2015(ii)EU-V dated 31/08/2016 and Indian Institute of Technology Patna for providing research facilities. The authors would like to thank the editor and anonymous referee(s) for careful reading and constructive suggestions to improve the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, H., Prakash, O. New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf Process 19, 319 (2020). https://doi.org/10.1007/s11128-020-02825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02825-z

Keywords

Mathematics Subject Classification

Navigation