Skip to main content
Log in

Entangled states as robust and re-usable carriers of information

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entangled states can be used as secure carriers of information much in the same way as carriers are used in classical communications. In such protocols, quantum states are uploaded to the carrier at one end and are downloaded from it in safe form at the other end, leaving the carrier intact and ready for reuse. Furthermore, protocols have been designed for performing quantum state sharing in this way. In this work, we study the robustness of these protocols against two of the most common sources of noise, namely de-phasing and depolarization and show that multiple uses of these carriers do not lead to accumulative errors, rather the error remains constant and under control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C., Wiesner, S.: Communication via one and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Raussendorf, R., Briegel, H.-J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  4. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science, 517–526 (2009)

  5. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  7. Xgiao, Li, Long, Gui Lu, Deng, Fu-Guo, Pan, Jian-Wei: Efficient multi-party quantum secret sharing schemes. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  Google Scholar 

  8. Xiao, Li, Long, Gui Lu, Deng, Fu-Guo, Pan, Jian-Wei: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  9. Zhang, Zhan-jun, Man, Zhong-xiao: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Wu, Y., Zhou, J., Gong, X., Guo, Y., Zhang, Z.-M., He, G.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93, 022325 (2016)

    Article  ADS  Google Scholar 

  11. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, p. 8. New York (1984)

  12. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bechmann-Pasquinucci, H., Gisin, N.: Incoherent and coherent eavesdropping in the 6-state protocol of quantum cryptography. Phys. Rev. A 59, 4238–4248 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bruss, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88(12), 127901 (2002)

    Article  ADS  Google Scholar 

  15. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)

    Article  ADS  Google Scholar 

  16. Zhang, Zhan-jun, Li, Yong, Man, Zhong-xiao: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A Rapid Commun. 92, 030302 (2015)

    Article  ADS  Google Scholar 

  18. Karimipour, Vahid, Asoudeh, Marzieh: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A Rapid Commun. 92, 030301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang, Y.S., Li, C.F., Guo, G.C.: Quantum key distribution via quantum encryption. Phys. Rev. A 64, 024302 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable GHZ states as secure carriers. Phys. Rev. A 67, 044302 (2003)

    Article  ADS  Google Scholar 

  21. Gao, F., Guo, F., Wu, Q., Zhu, F.: Comment on “Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers”. Phys. Rev. A 67, 044302 (2003)

    Article  Google Scholar 

  22. Jian-Zhong, Du, et al.: Comment II on “Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers”. Phys. Rev. A 67, 044302 (2003)

    Article  Google Scholar 

  23. Karimipour, V.: Reply to “Comment on ‘Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers”’. Phys. Rev. A 72, 056301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. Karimipour, V.: Reply to “Comment II on ‘Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers”’. Phys. Rev. A 74, 016302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Karimipour, V., Marvian, M.: Secure quantum carriers for quantum state sharing. Int. J. Quantum Inf. (IJQI) 10(2), 1250018 (2012)

    Article  MathSciNet  Google Scholar 

  26. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  27. Ioannis Kogias, Yu., Xiang, Qiongyi He, Adesso, Gerardo: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a Grant No. 96011347 from the Iran National Science Foundation. The work of V. K. was also partially supported by the Grant G950222 from the research grant system of Sharif Univeristy of Technology. We also thank Abdus Salam ICTP where the final stages of this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Asoudeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamipanah, S., Asoudeh, M. & Karimipour, V. Entangled states as robust and re-usable carriers of information. Quantum Inf Process 19, 357 (2020). https://doi.org/10.1007/s11128-020-02822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02822-2

Keywords

Navigation