Skip to main content
Log in

Local equivalence of quantum orthogonal arrays and orthogonal arrays

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two orthogonal arrays (OAs) are locally equivalent if they lead to locally equivalent quantum states. By studying permutations of the rows or levels of each factor, we present the local equivalence between two OAs. Using the tensor products of unitary matrices, we find that two infinite classes of OAs, OA\((d^n,n+1,d,n)\) and OA\((d,n+1,d,1)\), are locally equivalent. Therefore, we provide a positive answer to the open problem of which OAs are locally equivalent, i.e., \(\mathrm{OA}(r,N,d,k)\sim _{loc}\mathrm{OA}(r',N,d,k')\), in a sense that they lead to locally equivalent quantum states. In addition, an improved quantum orthogonal array (IQOA) is defined. The equivalence and local equivalence of IQOAs are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goyeneche, D., Raissi, Z., Martino, S.D., Życzkowski, K.: Entanglement and quantum combinatorial designs. Phys. Rev. A 97(6), 062326 (2018)

    Article  ADS  Google Scholar 

  2. Eisert, J.: Entanglement and tensor network states. Model. Simul. 3, 520 (2013). arXiv:1308.3318

    Google Scholar 

  3. Orús, R., Wei, T.C., Buerschaper, O., García-Saez, A.: Topo-logical transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization. Phys. Rev. Lett. 113(25), 257202 (2014)

    Article  ADS  Google Scholar 

  4. Goyeneche, D., Życzkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90(2), 022316 (2014)

    Article  ADS  Google Scholar 

  5. Arnaud, L., Cerf, N.J.: Exploring pure quantum states with maximally mixed reductions. Phys. Rev. A 87(1), 012319 (2013)

    Article  ADS  Google Scholar 

  6. Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69(5), 052330 (2004)

    Article  ADS  Google Scholar 

  7. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729–4732 (2000)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  Google Scholar 

  13. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430(6995), 54–58 (2004)

    Article  ADS  Google Scholar 

  14. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734–737 (2004)

    Article  ADS  Google Scholar 

  15. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999)

    Book  Google Scholar 

  16. Duan, R., Feng, Y.M., Ying, S.: Local distinguishability of multipartite unitary operations. Phys. Rev. Lett. 100(2), 020503 (2008)

    Article  ADS  Google Scholar 

  17. Roetteler, M., Wocjan, P.: Equivalence of decoupling schemes and orthogonal arrays. IEEE Trans. Inf. Theory 52(9), 4171–4181 (2006)

    Article  MathSciNet  Google Scholar 

  18. Li, M.S., Wang, Y.L.: \(K\)-uniform quantum states arising from orthogonal arrays. Phys. Rev. A 99(4), 042332 (2019)

    Article  ADS  Google Scholar 

  19. Feng, K.Q., Jin, L.F., Xing, C.P., Yuan, C.: Multipartite entangled states, symmetric matrices, and error-correcting codes. IEEE Trans. Inf. Theory 63(9), 5618–5627 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lidar, D., Brun, T.: Quantum Error Correction. Cambridge University Press, Cambridge U.K. (2013)

    Book  Google Scholar 

  22. Goyeneche, D., Alsina, D., Latorre, J.I., Riera, K., Życzkowski, A.: Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices. Phys. Rev. A 92(3), 032316 (2015)

    Article  ADS  Google Scholar 

  23. Albeverio, S., Cattaneo, L., Fei, S.M., Wang, X.H.: Multipartite states under local unitary transformations. Rep. Math. Phys. 56(3), 341–350 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. Briegel, H.J., Raussendorf, R.: Persistent Entanglement in Arrays of Interacting Particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

    Article  ADS  Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Kruszynska, C., Kraus, B.: Local entanglability and multipartite entanglement. Phys. Rev. A 79(5), 052304 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Pang, S.Q., Yan, R., Li, S.: Schematic saturated orthogonal arrays obtained by using the contractive replacement method. Comm. Stat. Theory Methods 46(18), 8913–8924 (2017)

    Article  MathSciNet  Google Scholar 

  28. Pang, S.Q., Zhang, X., Lin, X., Zhang, Q.J.: Two and three-uniform states from irredundant orthogonal arrays. npj Quant. Inf. 5(52), 1–10 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971004, 61572246, 61602232), the Program for Science & Technology Innovation Research Team in Universities of Henan Province (Grant No. 18IRTSTHN014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanqi Pang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Yin, C., Pang, S. et al. Local equivalence of quantum orthogonal arrays and orthogonal arrays. Quantum Inf Process 19, 303 (2020). https://doi.org/10.1007/s11128-020-02799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02799-y

Keywords

Navigation