Skip to main content
Log in

Deterministic bidirectional controlled remote preparation without information splitting

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By using a five-qubit entangled state as the quantum channel, we propose an efficient protocol for implementing bidirectional controlled remote preparation of arbitrary single-qubit states with unit success probability. The senders do not need to perform information splitting and additional unitary operations due to the elaborately constructed measurement basis. Furthermore, three-bit classical communication can be saved at the controller’s broadcast channel with the aid of network coding. Then, we consider the effect of five-type noises on the proposed protocol. It is found that the fidelities of the output states are dependent on the coefficients of the prepared state and the noise parameter. Interestingly, the fidelity is irrelevant to the participators’ measurement results except in the amplitude-damping and phase-damping noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma, S.Y., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Probabilistic quantum network coding of M-qudit states over the butterfly network. Opt. Commun. 283(3), 497–501 (2010)

    ADS  Google Scholar 

  2. Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.P.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297–4322 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Li, Z.Z., Xu, G., Chen, X.B., Qu, Z.G., Niu, X.X., Yang, Y.X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inf. Sci. 62(1), 012501 (2019)

    Google Scholar 

  4. Gong, L.H., Tian, C., Li, J.F., Zou, X.F.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17(12), 331 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Zhou, N.R., Zhu, K.N., Zou, X.F.: Quantum communication: multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531(8), 1800520 (2019)

    MathSciNet  Google Scholar 

  6. Lo, H.K.: Classical-communication cost indistributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2001)

    ADS  Google Scholar 

  9. Chen, Q.Q., Xia, Y., Song, J.: Probabilistic joint remote preparation of a two particle high-dimensional equatorial state. Opt. Commun. 284(20), 5031–5035 (2011)

    ADS  Google Scholar 

  10. Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, S.Y., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13(9), 1979–2005 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Ma, S.Y., Gao, C., Luo, M.X.: Effcient schemes of joint remote preparation with a passive receiver via EPR pairs. Chin. Phys. B 24(11), 110308 (2015)

    ADS  Google Scholar 

  12. Wu, N.N., Jiang, M.: A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf. Process. 17(12), 340 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two- and three-qubit states via the Brown state. Quantum Inf. Process. 11(6), 1653–1667 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the Brown state with no restriction. Int. J. Theor. Phys. 55(5), 2643–2652 (2016)

    MATH  Google Scholar 

  15. Chen, W.L., Ma, S.Y., Qu, Z.G.: Controlled remote preparation of an arbitrary four-qubit cluster-type state. Chin. Phys. B 25(10), 100304 (2016)

    ADS  Google Scholar 

  16. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit \(\chi \) entangled state. Quantum Inf. Process. 17(5), 105 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)

    ADS  Google Scholar 

  18. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)

    ADS  Google Scholar 

  19. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)

    ADS  Google Scholar 

  20. Ma, S.Y., Luo, M.X., Chen, X.B., Yang, Y.X.: Schemes for remotely preparing an arbitrary four-qubit \(\chi \)-state. Quant. Inf. Process. 13(9), 1951–1965 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Ma, S.Y., Gao, C., Zhang, P., Qu, Z.G.: Deterministic remote preparation via the Brown state. Quantum Inf. Process. 16(4), 93 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306(5–6), 271–276 (2003)

    ADS  Google Scholar 

  23. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98(5), 050504 (2007)

    ADS  Google Scholar 

  24. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vectorpolarization states. Phys. Rev. Lett. 105(3), 030407 (2010)

    ADS  Google Scholar 

  25. Erhard, M., Qassim, H., Mand, H., Karimi, E., Boyd, R.W.: Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation. Phys. Rev. A 92(2), 022321 (2015)

    ADS  Google Scholar 

  26. Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(1), 015003 (2014)

    ADS  Google Scholar 

  27. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Zhang, D., Zha, X.W., Duan, Y.J., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)

    MATH  Google Scholar 

  31. Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)

    MATH  Google Scholar 

  32. Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z.G., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)

    ADS  MATH  Google Scholar 

  33. Ma, P.C., Chen, G.B., Li, X.W., Zhang, J., Zhan, Y.B.: Asymmetric controlled bidirectional remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 56(9), 2716–2723 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf. Process. 16(12), 308 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Sun, Y.R., Chen, X.B., Xu, G., Yuan, K.G., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state. Sci. Rep. 9, 2081 (2019)

    ADS  Google Scholar 

  36. Sun, Y.R., Xiang, N., Dou, Z., Xu, G., Chen, X.B., Yang, Y.X.: A universal protocol for controlled bidirectional quantum state transmission. Quantum Inf. Process. 18(9), 281 (2019)

    ADS  MathSciNet  Google Scholar 

  37. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theor. 46(4), 1204–1216 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Ling, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537–542 (2003)

    ADS  MathSciNet  Google Scholar 

  39. Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16(5), 140 (2017)

    ADS  MATH  Google Scholar 

  40. Felloni, S., Strini, G.: An error model for the Cirac–Zoller CNOT gate. Quantum Commun. and Quantum Net. 36, 210 (2010)

    ADS  MATH  Google Scholar 

  41. Wang, H.F., Wen, J.J., Zhu, A.D., Zhang, S., Yeon, K.H.: Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. A 377(40), 2870–2876 (2013)

    ADS  MATH  Google Scholar 

  42. Gueddana, A., Gholami, P., Lakshminarayanan, V.: Can a universal quantum cloner be used to design an experimentally feasible near-deterministic CNOT gate? Quantum Inf. Process. 18(7), 221 (2019)

    ADS  Google Scholar 

  43. Ferraro, E., Fanciulli, M., De Michielis, M.: Controlled-NOT gate sequences for mixed spin qubit architectures in a noisy environment. Quantum Inf. Process. 16(11), 277 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Procopio, L.M., Moqanaki, A., Araujo, M., Costa, F., Calafell, I.A., Dowd, E.G., Hamel, D.R., Rozema, L.A., Brukner, C., Walther, P.: Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015)

    ADS  Google Scholar 

  45. Rosenblum, S., Gao, Y.Y., Reinhold, P., Wang, C., Axline, C.J., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9, 652 (2018)

    ADS  Google Scholar 

  46. Zajac, D.M., Sigillito, A.J., Russ, M., Borjans, F., Taylor, J.M., Burkard, G., Petta, J.R.: Resonantly driven CNOT gate for electron spins. Science. 359(6374), 439–442 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61201253, 61572246), Open Foundation of State Key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (No. SKLNST-2018-1-16), the program for science and technology innovation research team in universities of Henan province (No. 18IRTSTHN014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songya Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Take the measurement result \(|\xi ^1_{00}\rangle |\xi ^2_{10}\rangle |1\rangle \) as an example, we calculate the output state under the bit flip noise in detail.

The effect on the shared channel \(|\varOmega '\rangle \) under the bit-flip noise is

$$\begin{aligned} \varepsilon _{bf}(\rho )= & {} \frac{1}{8}\{\lambda ^4\sum \limits _{j=0}^1[(|101\rangle +(-1)^j|010\rangle )^{\otimes 2}|j\rangle ] \sum \limits _{j=0}^1[(\langle 101|+(-1)^j\langle 010|)^{\otimes 2}\langle j|]\\&+(1-\lambda )^4\sum \limits _{j=0}^1[(|000\rangle +(-1)^j|111\rangle )^{\otimes 2}|j\rangle ] \sum \limits _{j=0}^1[(\langle 000|+(-1)^j\langle 111|)^{\otimes 2}\langle j|]\\&+\lambda ^2(1-\lambda )^2\sum \limits _{j=0}^1[(|001\rangle +(-1)^j|110\rangle )(|100\rangle +(-1)^j|011\rangle )|j\rangle \\&\times \sum \limits _{j=0}^1[(\langle 001|+(-1)^j\langle 110|)(\langle 100|+(-1)^j\langle 011|)\langle j|]\\&+\lambda ^2(1-\lambda )^2\sum \limits _{j=0}^1[(|100\rangle +(-1)^j|011\rangle )(|001\rangle +(-1)^j|110\rangle )|j\rangle ] \\&\times \sum \limits _{j=0}^1[(\langle 100|+(-1)^j\langle 011|)(\langle 001|+(-1)^j\langle 110|)\langle j|] \}. \end{aligned}$$

If Alice\(_1\)’s measurement result is \(|\xi ^1_{00}\rangle \), the system of qubits \((2,3,3',4,5)\) becomes

where \(g(\lambda )=[\lambda ^2+(1-\lambda )^2]^2\).

If Alice\(_2\)’s measurement result is \(|\xi ^2_{10}\rangle \), the system of qubits (2, 4, 5) becomes

If Charlie’s measurement outcome is \(|1\rangle \), the system of qubits (2, 4) becomes

$$\begin{aligned} \rho _3= & {} \mathrm{tr}_{5}\left( \frac{M_C\rho _2M_C^\dag }{\mathrm{tr}(M_C^\dag M_C\rho _2)}\right) \\= & {} \frac{1}{g(\lambda )}\left\{ \lambda ^4(\alpha _1|1\rangle -\beta _1^*|0\rangle )(\alpha _2|0\rangle +\beta _2^*|1\rangle ) (\alpha _1\langle 1|-\beta _1\langle 0|)(\alpha _2\langle 0|+\beta _2\langle 1|)\right. \\&+(1-\lambda )^4(\alpha _1|0\rangle -\beta _1|1\rangle )(\alpha _2|1\rangle +\beta _2|0\rangle ) (\alpha _1\langle 0|-\beta _1^*\langle 1|)(\alpha _2\langle 1|+\beta _2^*\langle 0|)\\&+\lambda ^2(1-\lambda )^2[(\alpha _1|1\rangle -\beta _1|0\rangle )(\alpha _2|1\rangle +\beta _2^*|0\rangle ) (\alpha _1\langle 1|-\beta _1^*\langle 0|)(\alpha _2\langle 1|+\beta _2\langle 0|)\\&\left. +(\alpha _1|0\rangle -\beta _1^*|1\rangle )(\alpha _2|0\rangle +\beta _2|1\rangle ) (\alpha _1\langle 0|-\beta _1\langle 1|)(\alpha _2\langle 0|+\beta _2^*\langle 1|)]\right\} . \end{aligned}$$

According to the measurement result, Alice\(_1\) and Alice\(_2\) perform recovery unitary operation \(U_{A_1A_2}=X_4Z_2\) and get the output state \(\rho _{out}^{bf} =U_{A_1A_2}\rho _3U_{A_1A_2}^\dagger \) in Eq. (23).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Gong, L. Deterministic bidirectional controlled remote preparation without information splitting. Quantum Inf Process 19, 255 (2020). https://doi.org/10.1007/s11128-020-02760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02760-z

Keywords

Navigation