Skip to main content
Log in

Quantum walk inspired algorithm for graph similarity and isomorphism

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Large-scale complex systems, such as social networks, electrical power grid, database structure, consumption pattern or brain connectivity, are often modelled using network graphs. Valuable insight can be gained by measuring similarity between network graphs in order to make quantitative comparisons. Since these networks can be very large, scalability and efficiency of the algorithm are key concerns. More importantly, for graphs with unknown labelling, this graph similarity problem requires exponential time to solve using existing algorithms. In this paper, we propose a quantum walk inspired algorithm, which provides a solution to the graph similarity problem without prior knowledge on graph labelling. This algorithm is capable of distinguishing between minor structural differences, such as between strongly regular graphs with the same parameters. The algorithm has a polynomial complexity, scaling with \(O(n^9)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ek, B., VerSchneider, C., Cahill, N., Narayan, D.: A comprehensive comparison of graph theory metrics for social networks. Soc. Netw. Anal. Min. 5, 1–7 (2015)

    Article  Google Scholar 

  2. Horváth, T., Gärtner, T., Wrobel, S.: “Cyclic pattern kernels for predictive graph mining,” In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pp. 158–167, ACM (2004)

  3. Luo, Y., Zhao, Y., Cheng, L., Jiang, P., Wang, J.: Protein-protein Interaction Network Comparison Based on Wavelet and Principal Component Analysis, pp. 294–298. IEEE Publishing, New York (2010)

    Google Scholar 

  4. Mheich, A., Hassan, M., Khalil, M., Gripon, V., Dufor, O., Wendling, F.: Siminet: a novel method for quantifying brain network similarity. IEEE Trans. Pattern Anal. Mach. Intell. 40(9), 2238–2249 (2017)

    Article  Google Scholar 

  5. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search over large graph databases. IEEE Trans. Knowl. Data Eng. 27, 964–978 (2015)

    Article  Google Scholar 

  6. Showbridge, P., Kraetzl, M., Ray, D.: Detection of Abnormal Change in Dynamic Networks, pp. 557–562. IEEE Publishing, New York (1999)

    Google Scholar 

  7. Koutra, D., Vogelstein, J.T., Faloutsos, C.: DELTACON: A principled massive-graph similarity function, arXiv:1304.4657 (2013)

  8. Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications, In: Proceedings of Vision Interface 2000, Montreal, pp. 82–88 (2000)

  9. Emmert-Streib, F., Dehmer, M., Shi, Y.: Fifty years of graph matching, network alignment and network comparison. J. Inf. Sci. 346–347, 180–197 (2016)

    Article  MathSciNet  Google Scholar 

  10. Levi, G.: A note on the derivation of maximal common subgraphs of two directed or undirected graphs. CALCOLO 9, 341–352 (1973)

    Article  MathSciNet  Google Scholar 

  11. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recogn. Lett. 19, 255–259 (1998)

    Article  Google Scholar 

  12. Douglas, B.L., Wang, J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A: Math. Theor. 41, 075303 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Berry, S.D., Wang, J.B.: Two-particle quantum walks: Entanglement and graph isomorphism testing. Phys. Rev. A 83, 042317 (2011)

    Article  ADS  Google Scholar 

  14. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10, 695–703 (1988)

    Article  Google Scholar 

  15. Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks, Quantum Science and Technology, 1st edn. Springer, Berlin, Heidelberg (2013)

    MATH  Google Scholar 

  16. Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. J. Comput. Syst. Sci. 62, 376–391 (2001)

    Article  MathSciNet  Google Scholar 

  17. Erdős, P., Rènyi, A.: On random graphs. Publ. Math. 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  18. Erdős, P., Rènyi, A.: On the evolution of random graphs, In: Publication of the Mathematical Institute of the Hungarian Academy of Sciences (1960) pp. 17–61

  19. Ganesh, A., Massoulie, L., Towsley, D.: The Effect of Network Topology on the Spread of Epidemics, pp. 1455–1466. IEEE, New York (2005)

    Google Scholar 

  20. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. Albert, H.J.R., Barabási, A.-L.: Internet: Diameter of the world-wide web. Nature 401, 130–131 (1999)

    Article  ADS  Google Scholar 

  22. Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)

    Article  Google Scholar 

  23. Nafis, S., Kalaiarasan, P., Brojen Singh, R.K., Husain, M., Rameshwar, N.K.: Bamezai, Apoptosis regulatory protein-protein interaction demonstrates hierarchical scale-free fractal network. Brief. Bioinform. 16, 675–699 (2015)

    Article  Google Scholar 

  24. He, B.: Scale-free brain activity: past, present, and future. Trends In Cogn. Sci. 18, 480–487 (2014)

    Article  Google Scholar 

  25. López-Pintado, D.: Diffusion in complex social networks. Games Econ. Behav. 62, 573–590 (2008)

    Article  MathSciNet  Google Scholar 

  26. Barabási, A.-L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A 281, 69–77 (2000)

    Article  Google Scholar 

  27. Bose, R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math. 13, 389–419 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by resources provided by The Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. YL acknowledges funding from the National Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo B. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schofield, C., Wang, J.B. & Li, Y. Quantum walk inspired algorithm for graph similarity and isomorphism. Quantum Inf Process 19, 281 (2020). https://doi.org/10.1007/s11128-020-02758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02758-7

Keywords

Navigation