Skip to main content
Log in

Temporal nonlocality of a two-level system interacting with a dephasing environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Temporal nonlocality of a two-level system interacting with a thermal reservoir is studied in terms of the Leggett–Garg inequality and the quantum witness, where the dephasing coupling and the Ohmic-like spectral density are assumed for an system-reservoir interaction. When the whole system is initially in the thermal equilibrium state, which is a quantum-classical correlated state, violation of the Leggett–Garg inequality and the quantum witness are investigated in detail. It is shown how the time evolution of the temporal nonlocality depends on the system-reservoir coupling strength, the reservoir temperature and the Ohmicity parameter. The results are compared with those obtained for a non-correlated initial state, where the two-level system and the thermal reservoir are initially in their own thermal equilibrium states. The comparison reveals that ignoring the initial correlation yields an additional phase shift in two-time correlation functions of the two-level system. The effect of the system-reservoir initial correlation becomes more significant as the Ohmicity parameter is smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  2. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  4. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  5. Cavalcanti, D., Skrzypczyk, P.: Quantitative relations between measurement incompatibility, quantum steering, and nonlocality. Phys. Rev. A 93, 052112 (2016)

    Article  ADS  Google Scholar 

  6. McCloskey, R., Ferraro, A., Paternostro, M.: Einstein–Podolsky–Rosen steering and quantum steering ellipsoids: optimal two-qubit states and projective measurements. Phys. Rev. A 95, 012320 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  9. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley-VCH, Weinheim (2005)

    Book  MATH  Google Scholar 

  10. Einstein, A., Podolski, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  11. Reid, M.D., Drummond, P.D., Bowen, W.P., Cavalcanti, E.G., Lam, K.P., Bachor, H.A., UAndersen, U.L., Leuchs, G.: The Einstein–Podolsky–Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum Communication and Quantum Information. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  13. Jeager, G.: Quantum Information. Springer, Berlin (2007)

    Google Scholar 

  14. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. Leggett, A.J.: Realism and the physical world. Rep. Prog. Phys. 71, 022001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Goggin, M.E., Almeida, M.P., Barbieri, M., Lanyon, B.P., O’brien, J.L., White, A.G., Pryde, G.J.: Violation of the Leggett–Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. 108, 1256 (2011)

    Article  ADS  Google Scholar 

  18. Dressel, J., Broadbent, C.J., Howell, J.C., Jordan, A.N.: Experimental violation of two-party Leggett–Garg inequalities with semiweak measurements. Phys. Rev. Lett. 106, 040402 (2011)

    Article  ADS  Google Scholar 

  19. Xu, J., Li, C., Zou, X., Guo, G.: Experimental violation of the Leggett–Garg inequality under decoherence. Sci. Rep. 1, 101 (2011)

    Article  Google Scholar 

  20. Athalye, V., Roy, S.S., Mahesh, T.S.: Investigation of the Leggett–Garg inequality for precessing nuclear spins. Phys. Rev. Lett. 107, 130402 (2011)

    Article  ADS  Google Scholar 

  21. Katiyar, H., Shukla, A., Rao, K., Mahesh, T.S.: Violation of entropic Leggett–Garg inequality in nuclear spins. Phys. Rev. A 87, 052102 (2013)

    Article  ADS  Google Scholar 

  22. Palacios-Laloy, A., Mallet, F., Nguyen, F., Berlet, P., Vion, D., Esteve, D., Korotkov, A.: Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442 (2010)

    Article  Google Scholar 

  23. Knee, G.C., Kakuyanagi, K., Yeh, M., Matsuzaki, Y., Toida, H., Yamaguchi, H., Saito, S., Leggett, A.J., Munro, W.J.: A strict experimental test of macroscopic realism in a superconducting flux qubit. Nat. Commun. 7, 13253 (2016)

    Article  ADS  Google Scholar 

  24. Thenabadu, M., Reid, M.D.: Leggett–Garg tests of macrorealism for dynamical cat states evolving in a nonlinear medium. Phys. Rev. 99, 032125 (2019)

    Article  ADS  Google Scholar 

  25. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1968)

    MATH  Google Scholar 

  26. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  27. Schild, G., Emary, C.: Maximum violations of the quantum-witness equality. Phys. Rev. A 92, 032101 (2015)

    Article  ADS  Google Scholar 

  28. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1983)

    MATH  Google Scholar 

  29. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  30. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  31. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  32. Lobejko, M., Luczka, J., Dajka, J.: Leggett–Garg inequality for qubits coupled to thermal environment. Phys. Rev. A 91, 042113 (2015)

    Article  ADS  Google Scholar 

  33. Friedenberger, A., Lutz, E.: Assessing the quantumness of a damped two-level system. Phys. Rev. A 95, 022101 (2017)

    Article  ADS  Google Scholar 

  34. Ban, M.: Two-time correlations functions and quantumness of an open two-level system. Eur. Phys. J. D 73, 12 (2019)

    Article  ADS  Google Scholar 

  35. Chen, P., Ali, M.M.: Investigating Leggett–Garg inequality for a two level system under decoherence in a non-Markovian dephasing environment. Scr. Rep. 4, 6165 (2014)

    Article  Google Scholar 

  36. Royer, A.: Reduced dynamics with initial correlations, and time-dependent environment and Hamiltonians. Phys. Rev. Lett. 77, 3272 (1996)

    Article  ADS  Google Scholar 

  37. Štelmachoviç, P., Bužek, V.: Dynamics of open quantum systems initially entangled with environment: beyond the Kraus representation. Phys. Rev. A 64, 062106 (2001)

    Article  ADS  Google Scholar 

  38. Xu, G.F., Liu, L.J., Tong, D.M.: Effect of preparation procedures on the system’s entanglement evolution. Euro. Phys. J. D 66, 236 (2012)

    Article  ADS  Google Scholar 

  39. Chaudhry, A.Z., Gong, J.: Amplification and suppression of system-bath-correlation effects in an open many-body system. Phys. Rev. A 87, 012129 (2013)

    Article  ADS  Google Scholar 

  40. Gao, Y.: The dynamical role of initial correlation in the exactly solvable dephasing model. Eur. Phys. J. D 67, 183 (2013)

    Article  ADS  Google Scholar 

  41. Chaudhry, A.Z., Gong, J.: Role of initial system-environment correlations: a master equation approach. Phys. Rev. A 88, 052107 (2013)

    Article  ADS  Google Scholar 

  42. Kitajima, S., Ban, M., Shibata, F.: Expansion formulas for quantum master equations including initial correlation. J. Phys. A 50, 125303 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Morozov, V.G., Mathey, S., Röpke, G.: Phys. Rev. A 85, 022101 (2012)

    Article  ADS  Google Scholar 

  44. Luczka, J.: Spin in contact with thermostat: exact reduced dynamics. Physica A 167, 919 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  45. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  46. Brun, T.A.: A simple model of quantum trajectories. Am. J. Phys. 70, 719 (2002)

    Article  ADS  Google Scholar 

  47. Saha, D., Mal, S., Panigrahi, P.K., Home, D.: Wigner’s form of the Leggett–Garg inequality, the no-signaling-in-time condition, and unsharp measurements. Phys. Rev. A 91, 032117 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  48. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  49. Wiseman, H.M., Milburn, G.I.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  50. Srinivas, M.D.: Measurements and Quantum Probabilities. Universities Press, Hyderabad (2001)

    Google Scholar 

  51. Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A 86, 044101 (2012)

    Article  ADS  Google Scholar 

  52. Hall, H., Cresser, J., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89, 042120 (2014)

    Article  ADS  Google Scholar 

  53. Wang, C., Li, C., Guo, Y., Lu, G., Ding, K.: Environment and initial state engineered dynamics of quantum and classical correlations. Ann. Phys. 374, 212 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambrige Unversity Press, Cambridge (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Derivation of \(\langle V(t_{j},t_{k})\rangle \) and \(\langle V(t_{j},t_{k})\sigma _{z}\rangle \) in Sects. 3 and 4

In this “Appendix”, we calculate the average values \(\langle V(t_{j},t_{k})\rangle \) and \(\langle V(t_{j},t_{k})\sigma _{z}\rangle \) which are used to examine the Leggett–Garg inequality and the quantum witness in Sects. 3 and 4. First, substituting Eq. (2) into (9) and using the commutation relation of bosonic annihilation and creation operators, we can rewrite the operator \(V(t_{j},t_{k})\) into

$$\begin{aligned} V(t_{j},t_{k})= & {} \mathrm {T}_{\rightarrow } \exp \left( i\sum _{\ell }\int _{t_{k}}^{t_{j}}\text {d}t\, [g_{\ell }a_{\ell }^{\dagger }\text {e}^{i\omega _{\ell }(t-t_{k})} +g_{\ell }^{*}a_{\ell }\text {e}^{-i\omega _{\ell }(t-t_{k})}]\right) \nonumber \\&\times \, \mathrm {T}_{\leftarrow } \exp \left( i\sum _{\ell }\int _{t_{k}}^{t_{j}}\text {d}t\, [g_{\ell }a_{\ell }^{\dagger }\text {e}^{i\omega _{\ell }(t-t_{k})} +g_{\ell }^{*}a_{\ell }\text {e}^{-i\omega _{\ell }(t-t_{k})}]\right) \nonumber \\= & {} \exp \left[ i\sum _{\ell }(C_{\ell }(t_{j}-t_{k})a_{\ell }^{\dagger } +C_{\ell }^{*}(t_{j}-t_{k})a_{\ell })\right] , \end{aligned}$$
(45)

where \(C_{k}(t_{j}-t_{k}){=}(2g_{k}/i\omega _{k})(\text {e}^{i\omega _{k}(t_{j}-t_{k})}-1)\) and \(\mathrm {T}_{\leftarrow }\) (\(\mathrm {T}_{\rightarrow }\)) stands for the time-ordering (the ant-time-order) operation. Then, using Eq. (3), we obtain the average value of Eq. (45),

$$\begin{aligned} \langle V(t_{j},t_{k})\rangle= & {} \frac{\text {e}^{{-}\beta \hbar \omega /2}}{\text {e}^{\beta \hbar \omega /2}{+}\text {e}^{{-}\beta \hbar \omega /2}} \mathrm {Tr}[V(t_{j},t_{k})\rho _{+}] {+}\frac{\text {e}^{\beta \hbar \omega /2}}{\text {e}^{\beta \hbar \omega /2}+\text {e}^{-\beta \hbar \omega /2}} \mathrm {Tr}[V(t_{j},t_{k})\rho _{-}] \nonumber \\= & {} \frac{\text {e}^{-\beta \hbar \omega /2}}{\text {e}^{\beta \hbar \omega /2}+\text {e}^{-\beta \hbar \omega /2}} \nonumber \\&\times \exp \left[ -i\sum _{\ell }\left( \frac{g_{\ell }^{*}}{\omega _{\ell }} C_{\ell }(t_{j}-t_{k}) +\frac{g_{\ell }}{\omega _{\ell }}C_{\ell }^{*}(t_{j}-t_{k})\right) \right. \nonumber \\&\quad \left. -\,\frac{1}{2}\sum _{\ell }\vert C_{\ell }(t_{j}-t_{k}) \vert ^{2}(2{\bar{n}}_{\ell }+1)\right] \nonumber \\&+\,\frac{\text {e}^{\beta \hbar \omega /2}}{\text {e}^{\beta \hbar \omega /2}+\text {e}^{-\beta \hbar \omega /2}} \nonumber \\&\times \exp \left[ i\sum _{\ell }\left( \frac{g_{\ell }^{*}}{\omega _{\ell }} C_{\ell }(t_{j}-t_{k}) +\frac{g_{\ell }}{\omega _{\ell }}C_{\ell }^{*}(t_{j}-t_{k})\right) \right. \nonumber \\&\quad \left. -\,\frac{1}{2}\sum _{\ell }\vert C_{\ell }(t_{j}-t_{k})\vert ^{2} (2{\bar{n}}_{\ell }+1)\right] . \end{aligned}$$
(46)

The real and imaginary parts in the exponentials are calculated to be

$$\begin{aligned} \frac{1}{2}\sum _{\ell }\vert C_{\ell }(t_{j}-t_{k}) \vert ^{2}(2{\bar{n}}_{\ell }+1)= & {} \sum _{\ell }\frac{4\vert g_{\ell }\vert ^{2}}{\omega _{\ell }^{2}} (2{\bar{n}}_{\ell }+1)[1-\cos \omega _{\ell }(t_{j}-t_{k})] \nonumber \\= & {} \int _{0}^{\infty }\text {d}w\,J(w)(2{\bar{n}}(w)+1) \frac{1-\cos w(t_{j}-t_{k})}{w^{2}} \nonumber \\= & {} \gamma (t_{j}-t_{k}), \end{aligned}$$
(47)

and

$$\begin{aligned} \sum _{\ell }\left( \frac{g_{\ell }^{*}}{\omega _{\ell }}C_{\ell }(t_{j}-t_{k}) +\frac{g_{\ell }}{\omega _{\ell }}C_{\ell }^{*}(t_{j}-t_{k})\right)= & {} \sum _{\ell }\frac{4\vert g_{\ell }\vert ^{2}}{\omega _{\ell }^{2}} \sin \omega _{\ell }(t_{j}-t_{k}) \nonumber \\= & {} \int _{0}^{\infty }\text {d}w\,J(w) \frac{\sin w(t_{j}-t_{k})}{w^{2}}\nonumber \\= & {} \phi (t_{j}-t_{k}). \end{aligned}$$
(48)

Then, Substituting these equations into Eq. (46), we obtain the average value,

$$\begin{aligned} \langle V(t_{j},t_{k})\rangle =\left[ \cos \phi (t_{j},t_{k}) +i\tanh (\beta \hbar \omega /2)\sin \phi (t_{j}-t_{k})\right] \text {e}^{-\gamma (t_{j}-t_{k})}, \end{aligned}$$
(49)

which yields Eq. (19). In the same way, we can derive the average value,

$$\begin{aligned} \langle V(t_{j},t_{k})\sigma _{z}\rangle= & {} \frac{\text {e}^{-\beta \hbar \omega /2}}{\text {e}^{\beta \hbar \omega /2}{+}\text {e}^{-\beta \hbar \omega /2}} \mathrm {Tr}[V(t_{j},t_{k})\rho _{+}] -\frac{\text {e}^{\beta \hbar \omega /2}}{\text {e}^{\beta \hbar \omega /2}+\text {e}^{-\beta \hbar \omega /2}} \mathrm {Tr}[V(t_{j},t_{k})\rho _{-}] \nonumber \\= & {} \frac{\text {e}^{-\beta \hbar \omega /2}}{\text {e}^{\beta \hbar \omega /2}+\text {e}^{-\beta \hbar \omega /2}} \nonumber \\&\times \exp \left[ -i\sum _{\ell }\left( \frac{g_{\ell }^{*}}{\omega _{\ell }} C_{\ell }(t_{j}-t_{k}) +\frac{g_{\ell }}{\omega _{\ell }}C_{\ell }^{*}(t_{j}-t_{k})\right) \right. \nonumber \\&\left. -\,\frac{1}{2}\sum _{\ell }\vert C_{\ell }(t_{j}-t_{k}) \vert ^{2}(2{\bar{n}}_{\ell }+1)\right] \nonumber \\&-\,\frac{\text {e}^{\beta \hbar \omega /2}}{\text {e}^{\beta \hbar \omega /2}+\text {e}^{-\beta \hbar \omega /2}} \nonumber \\&\times \exp \left[ i\sum _{\ell }\left( \frac{g_{\ell }^{*}}{\omega _{\ell }} C_{\ell }(t_{j}-t_{k}) +\frac{g_{\ell }}{\omega _{\ell }}C_{\ell }^{*}(t_{j}-t_{k})\right) \right. \nonumber \\&\left. -\,\frac{1}{2}\sum _{\ell }\vert C_{\ell }(t_{j}-t_{k}) \vert ^{2}(2{\bar{n}}_{\ell }+1)\right] \nonumber \\= & {} -[\tanh (\beta \hbar \omega /2)\cos \phi (t_{j}-t_{k}) +i\sin \phi (t_{j}-t_{k})]\text {e}^{-\gamma (t_{j}-t_{k})}, \end{aligned}$$
(50)

from which we can obtain Eq. (36).

Derivation of the parameters \(\phi (t)\), \(\gamma (t)\) and \({\dot{\gamma }}(t)\)

When the thermal reservoir has the Ohmic-like spectral density (22), we derive Eqs. (23)–(26) and (28). First, substituting Eq. (22) into (20) and (21), we obtain \(\gamma (t)=\gamma _{0}(t)+\gamma _{1}(t)\) and \({\dot{\gamma }}(t)={\dot{\gamma }}_{0}(t)+{\dot{\gamma }}_{1}(t)\) with

$$\begin{aligned} \gamma _{0}(t)= & {} \lambda \int _{0}^{\infty }\text {d}x\,\text {e}^{-x}x^{s-2}(1-\cos ax), \end{aligned}$$
(51)
$$\begin{aligned} \gamma _{1}(t)= & {} \lambda \int _{0}^{\infty }\text {d}x\, \text {e}^{-x}x^{s-2}(1-\cos ax)(\coth bx/2-1), \end{aligned}$$
(52)
$$\begin{aligned} {\dot{\gamma }}_{0}(t)= & {} \lambda \varOmega \int _{0}^{\infty }\text {d}x\, \text {e}^{-x}x^{s-1}\sin ax, \end{aligned}$$
(53)
$$\begin{aligned} {\dot{\gamma }}_{1}(t)= & {} \lambda \varOmega \int _{0}^{\infty }\text {d}x\, \text {e}^{-x}x^{s-1}\sin ax(\coth bx/2-1), \end{aligned}$$
(54)

and

$$\begin{aligned} \phi (t)=\lambda \int _{0}^{\infty }\text {d}x\,\text {e}^{-x}x^{s-2}\sin ax. \end{aligned}$$
(55)

In these equation, we set \(a=\varOmega t\) and \(b=\hbar \varOmega /kT\) for the sake of simplicity. To calculate the integral on the right-hand side of Eq. (51), we first differentiate \(\gamma _{0}(t)\) with respect to the parameter a and then perform the integration with respect to x first and then a. Hence after straightforward calculation, we find that

$$\begin{aligned} \gamma _{0}(t)=\frac{1}{2}\lambda \ln (1+a^2), \end{aligned}$$
(56)

for \(s=1\) and

$$\begin{aligned} \gamma _{0}(t)=\lambda \varGamma (s-1) \left[ 1-\frac{\text {Re}(1+ia)^{s-1}}{(1+a^2)^{s-1}}\right] , \end{aligned}$$
(57)

for \(s\ne 1\). In this equation, \(\varGamma (z)\) is the gamma function. Furthermore, we note that the relations \(\cos (u\tan ^{-1}v)=\mathrm {Re}(1+iv)^{u}/(1+v^2)^{u/2}\) and \(\sin (u\tan ^{-1}v)=\mathrm {Im}(1+iv)^{u}/(1+v^2)^{u/2}\) hold for real parameters u and v. Then we finally obtain \(\gamma _{0}(t)=\frac{1}{2}\lambda \ln [1+(\varOmega t)^{2}]\) for \(s=1\) and \(\gamma _{0}(t)=\lambda \varGamma (s-1)f_{s}(\varOmega t)\) for \(s\ne 1\), where \(f_{s}(z)\) is given by Eq. (27).

Next, to calculate the integral on the right-hand side of Eq. (52), expanding \(\coth bx/2\) into a power series of \(\text {e}^{-bx}\), we obtain \(\gamma _{1}(t)=2\lambda \sum _{n=1}^{\infty }f_{n}(t)\) with

$$\begin{aligned} f_{n}(t)=\int _{0}^{\infty }\text {d}x\, \text {e}^{-(1+nb)x}x^{s-2}(1-\cos ax), \end{aligned}$$
(58)

which can be calculated in the same way used for deriving \(\gamma _{0}(t)\). In the case of \(s=1\), we obtain

$$\begin{aligned} f_{n}(t)=\frac{1}{2}\left[ \ln (1+bn-ia)+\ln (1+bn+ia)\right] -\ln (1+bn), \end{aligned}$$
(59)

which yields

$$\begin{aligned} \gamma _{1}(t)= & {} -2\lambda \sum _{n=1}^{\infty } \left[ \ln (1+bn)-\frac{1}{2}\ln (1+bn-ia) -\frac{1}{2}\ln (1+bn+ia)\right] \nonumber \\= & {} 2\lambda \left[ \ln \varGamma \left( 1+\frac{kT}{\hbar \varOmega }\right) -\frac{1}{2}\ln \left| \varGamma \left( 1+\frac{kT}{\hbar \varOmega }+i\frac{kT}{\hbar }t\right) \right| ^{2}\right] , \end{aligned}$$
(60)

where we have used [54]

$$\begin{aligned} \varGamma (z)=\lim _{n\rightarrow \infty } \frac{n!n^{z}}{\prod _{k=0}^{n}(k+z)}. \end{aligned}$$
(61)

Thus we find that \(\gamma (t)=\gamma _{0}(t)+\gamma _{1}(t)\) is equal to Eq. (23) for \(s=1\). On the other hand, when \(s\ne 1\), \(f_{n}(t)\) is calculated to be

$$\begin{aligned} f_{n}(t)= & {} \varGamma (s-1)\left[ \frac{1}{(1+bn)^{s-1}}-\frac{1}{(1+bn)^{s-1}} \frac{\mathrm {Re}\left( 1+\frac{ia}{1+bn}\right) ^{s-1}}{\left[ 1+\left( \frac{a}{1+bn}\right) ^{2}\right] ^{s-1}}\right] \nonumber \\= & {} \frac{\varGamma (s-1)}{(1+bn)^{s-1}}\left[ 1-\frac{\cos \left[ (s-1)\tan ^{-1}\left( \frac{a}{1+bn}\right) \right] }{\left[ 1+\left( \frac{a}{1+bn}\right) ^{2}\right] ^{(s-1)/2}}\right] . \end{aligned}$$
(62)

Then we obtain

$$\begin{aligned} \gamma _{1}(t)&=2\lambda \varGamma (s-1)\sum _{n=1}^{\infty } \frac{1}{(1+bn)^{s-1}}\left\{ 1-\frac{\cos \left[ (s-1)\tan ^{-1}\left( \frac{a}{1+bn}\right) \right] }{\left[ 1+\left( \frac{a}{1+bn}\right) ^{2}\right] ^{(s-1)/2}}\right\} \nonumber \\&=2\lambda \left( \frac{kT}{\hbar \varOmega }\right) ^{s-1}\varGamma (s-1) \sum _{n=1}^{\infty } \frac{1}{(n+kT/\hbar \varOmega )^{s-1}} f_{s}\left( \frac{\frac{k_{\mathrm {B}}T}{\hbar }t}{n+\frac{k_{\mathrm {B}}T}{\hbar \varOmega }}\right) , \end{aligned}$$
(63)

which shows that \(\gamma (t)=\gamma _{0}(t)+\gamma _{1}(t)\) is equal to Eq. (25) for \(s\ne 1\).

The time-derivative \({\dot{\gamma }}(t)\) can be calculated directly. In fact, we can derive

$$\begin{aligned} {\dot{\gamma }}(t)= & {} \frac{\lambda \varOmega }{2i}\int _{0}^{\infty }\text {d}x\, [\text {e}^{-(1-ia)x}-\text {e}^{-(1+ia)x}]x^{s-1}\nonumber \\&+\,2\lambda \varOmega \sum _{n=1}^{\infty }\frac{1}{2i} \int _{0}^{\infty }\text {d}x\,[\text {e}^{-(1+bn-ia)x}-\text {e}^{-(1+bn+ia)x}]x^{s-1} \nonumber \\= & {} \lambda \varOmega \varGamma (s) \frac{\text {Im}(1+ia)^{s}}{(1+a^2)^{s}} +2\lambda \varOmega \varGamma (s)\sum _{n=1}^{\infty } \frac{1}{(1+bn)^{s}} \frac{\text {Im}(1+ia/(1+bn))^{s}}{[1+(a/(1+bn))^{2}]^{s}} \nonumber \\= & {} \lambda \varOmega \varGamma (s)g_{s}(\varOmega t) +2\lambda \varOmega \varGamma (s) \left( \frac{k_{\mathrm {B}}T}{\hbar \varOmega }\right) ^{s} \nonumber \\&\times \sum _{n=1}^{\infty }\frac{1}{(n+k_{\mathrm {B}}T/\hbar \varOmega )^{s}} g_{s}\left( \frac{\frac{k_{\mathrm {B}}T}{\hbar }t}{n+\frac{k_{\mathrm {B}}T}{\hbar \varOmega }}\right) , \end{aligned}$$
(64)

where \(g_{s}(z)\) is given by Eq. (29). Thus we have derived Eq. (28). Finally, in the same way for deriving the parameter \(\gamma _{0}(t)\), the phase parameter \(\phi (t)\) is calculated to be

$$\begin{aligned} \phi (t)= & {} \frac{1}{2}\lambda \varGamma (s) \int _{0}^{a}\text {d}a' \left[ \frac{1}{(1-ia')^{s}}+\frac{1}{(1+ia')^{s}}\right] \nonumber \\= & {} \left\{ \begin{array}{ll} \displaystyle {\lambda \tan ^{-1}\varOmega t} &{}\quad (s=1) \\ \displaystyle { \lambda \varGamma (s-1)\frac{\sin [(s-1)\tan ^{-1}\varOmega t]}{[1+(\varOmega t)^{2}]^{(s-1)/2}}} &{}\quad (s\ne 1), \end{array}\right. \end{aligned}$$
(65)

which is equal to Eqs. (24) and (26).

Derivation of the correlation functions in Sect. 5

We calculate \(\langle V(t_{j},t_{0})V^{\dagger }(t_{k},t_{0})\rangle _{R}\), \(\langle V^{\dagger }(t_{j},t_{0})V(t_{k},t_{0})\rangle _{R}\), \(\langle V(t_{k},t_{0})V^{\dagger }(t_{j},t_{0})\rangle _{R}\) and \(\langle V^{\dagger }(t_{k},t_{0})V(t_{j},t_{0})\rangle _{R}\) used to examine the violation of the Leggett–Garg inequality and the quantum witness for the non-correlated initial state in Sect. 5. First we calculate the correlation function \(\langle V(t_{j},t_{0})V^{\dagger }(t_{k},t_{0})\rangle _{R}\). From Eq. (45), we obtain

$$\begin{aligned} V(t_{j},t_{0})V^{\dagger }(t_{k},t_{0})= & {} \exp \left[ i\sum _{\ell } [C_{\ell }(t_{j}-t_{0})a_{\ell }^{\dagger } +C_{\ell }^{*}(t_{j}-t_{0})a_{\ell }]\right] \nonumber \\&\times \exp \left[ -i\sum _{\ell } [C_{\ell }(t_{k}-t_{0})a_{\ell }^{\dagger } +C_{\ell }^{*}(t_{k}-t_{0})a_{\ell }]\right] \nonumber \\= & {} \exp \left[ i\sum _{\ell } [(C_{\ell }(t_{j}-t_{0})-C_{\ell }(t_{k}-t_{0}))a_{\ell }^{\dagger }\right. \nonumber \\&\left. +\,(C_{\ell }^{*}(t_{j}-t_{0})-C_{\ell }^{*}(t_{k}-t_{0}))a_{\ell }]\right] \exp (\varPhi _{jk}), \end{aligned}$$
(66)

with

$$\begin{aligned} \varPhi _{jk}= & {} \frac{1}{2}\sum _{\ell } [-C_{\ell }(t_{j}-t_{0})C_{\ell }^{*}(t_{k}-t_{0}) +C_{\ell }^{*}(t_{j}-t_{0})C_{\ell }(t_{k}-t_{0})] \nonumber \\= & {} -i\phi (t_{j}-t_{k})-i\delta _{jk}, \end{aligned}$$
(67)

where \(\phi (t_{j}-t_{k})\) is given by Eq. (21) or (48) and \(\delta _{jk}\) is given by Eq. (40). Since the thermal reservoir is in the equilibrium state \(\rho _{R}=\text {e}^{-H_{R}/k_{\mathrm {B}}T}/\mathrm {Tr}\text {e}^{-H_{R}/k_{\mathrm {B}}T}\), the average value of the exponential including the annihilation and creation operators in Eq. (66) is calculated to be

$$\begin{aligned}&\left\langle \exp \left[ i\sum _{\ell } [(C_{\ell }(t_{j}-t_{0})-C_{\ell }(t_{k}-t_{0}))a_{\ell }^{\dagger } +(C_{\ell }^{*}(t_{j}-t_{0})-C_{\ell }^{*}(t_{k}-t_{0}))a_{\ell }]\right] \right\rangle _{R} \nonumber \\&\quad =\exp \left[ -\frac{1}{2}\sum _{\ell } \vert C_{\ell }(t_{j}-t_{0})-C_{\ell }(t_{k}-t_{0})\vert ^{2} (2{\bar{n}}_{\ell }+1)\right] =\text {e}^{-\gamma (t_{j}-t_{k})}. \end{aligned}$$
(68)

Hence we obtain the correlation function,

$$\begin{aligned} \langle V(t_{j},t_{0})V^{\dagger }(t_{k},t_{0})\rangle _{R} =\text {e}^{-\gamma (t_{j}-t_{k})-i\phi (t_{j}-t_{k})-i\delta _{jk}}. \end{aligned}$$
(69)

In the same way, we can derive

$$\begin{aligned}&\langle V^{\dagger }(t_{j},t_{0})V(t_{k},t_{0})\rangle _{R} \nonumber \\&\quad =\left\langle \exp \left[ -i\sum _{\ell } [(C_{\ell }(t_{j}-t_{0})-C_{\ell }(t_{k}-t_{0}))a_{\ell }^{\dagger }\right. \right. \nonumber \\&\qquad \left. \left. +\,(C_{\ell }^{*}(t_{j}-t_{0})-C_{\ell }^{*}(t_{k}-t_{0}))a_{\ell }]\right] \right\rangle _{R} \exp (\varPhi _{jk}) \nonumber \\&\quad =\text {e}^{-\gamma (t_{j}-t_{k})-i\phi (t_{j}-t_{k})-i\delta _{jk}}. \end{aligned}$$
(70)

Taking complex conjugate of Eqs. (69) and (69), we obtain

$$\begin{aligned} \langle V(t_{k},t_{0})V^{\dagger }(t_{j},t_{0})\rangle _{R} =\langle V^{\dagger }(t_{k},t_{0})V(t_{j},t_{0})\rangle _{R} =\text {e}^{-\gamma (t_{j}-t_{k})+i\phi (t_{j}-t_{k})+i\delta _{jk}}. \end{aligned}$$
(71)

Therefore we have derived the correlation functions given by Eqs. (39) and (43).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usui, R., Ban, M. Temporal nonlocality of a two-level system interacting with a dephasing environment. Quantum Inf Process 19, 159 (2020). https://doi.org/10.1007/s11128-020-02656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02656-y

Keywords

Navigation