Skip to main content
Log in

Coding in the entanglement domain

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Moving at the speed of light, the photon is the ideal physical support to transmit information. Polarization of a photon is the predominant quantum property used to encode information, but other encoding domains, such as the spatial-mode degree of freedom, have been considered. In this paper, we put forward the entanglement degree of freedom of a photon as an exploitable resource for encoding information in quantum cryptographic protocols. We show how classical information can be extracted from the quantum state of a photon by distinguishing between a singular, independent state and an entangled state through interferometry. We also give a direct application of our technique to quantum key distribution as a proof of concept for future quantum protocols that may use coding in the entanglement domain in combination with other degrees of freedom that are currently exploited for cryptographic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abulkasim, H., Farouk, A., Alsuqaih, H., Hamdan, W., Hamad, S., Ghose, S.: Improving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 17(11), 316 (2018). https://doi.org/10.1007/s11128-018-2091-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Assche, G.V.: Quantum Cryptography and Secret-Key Distillation. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984), Bangalore, India December (1984)

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Born, M., Wolf, E.: Principles of Optics, 7th (expanded) edition. Cambridge University Press, Cambridge (1999)

  7. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  Google Scholar 

  8. Brown, J.: The Quest for the Quantum Computer, Touchstone edn. Simon & Schuster, New York (2001)

  9. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  10. Horgan, J.: Quantum philosophy. Sci. Am. 267(1), 94–105 (1992)

    Article  ADS  Google Scholar 

  11. Howell, J.C., Bennink, R.S., Bentley, S.J., Boyd, R.W.: Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)

    Article  ADS  Google Scholar 

  12. Ji, Y., Chung, Y., Sprinzak, D., Heiblum, M., Mahalu, D., Shtrikman, H.: An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003). https://doi.org/10.1038/nature01503

    Article  ADS  Google Scholar 

  13. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)

    Article  ADS  Google Scholar 

  14. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)

    Article  ADS  Google Scholar 

  15. Nape, I., Otte, E., Vallés, A., Rosales-Guzmán, C., Cardano, F., Denz, C., Forbes, A.: Self-healing high-dimensional quantum key distribution using hybrid spin-orbit bessel states. Opt. Express 26(21), 26946–26960 (2018)

    Article  ADS  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  17. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)

    Article  ADS  Google Scholar 

  18. Sit, A., Fickler, R., Alsaiari, F., Bouchard, F., Larocque, H., Gregg, P., Yan, L., Boyd, R.W., Ramachandran, S., Karimi, E.: Quantum cryptography with structured photons through a vortex fiber. Opt. Lett. 43(17), 4108–4111 (2018)

    Article  ADS  Google Scholar 

  19. Spekkens, R.W., Rudolph, T.: Degrees of concealment and bindingness in quantum bit commitment protocols. Phys. Rev. Lett. A 65, 012310 (2002)

    Article  ADS  Google Scholar 

  20. Wang, L., Ma, W.: Quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 16(5), 1–15 (2017). https://doi.org/10.1007/s11128-017-1576-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Nagy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, M., Nagy, N. Coding in the entanglement domain. Quantum Inf Process 19, 134 (2020). https://doi.org/10.1007/s11128-020-02632-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02632-6

Keywords

Navigation