Skip to main content
Log in

Enhancing phase sensitivity with number state filtered coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Number state filtered coherent states are a class of nonclassical states obtained by removing one or more number states from a coherent state. Phase sensitivity of an interferometer is enhanced if these nonclassical states are used as input states. The optimal phase sensitivity, which is related to the quantum Cramer–Rao bound for the input state, improves beyond the standard quantum limit. It is argued that the removal of more than one suitable number state leads to better phase sensitivity. As an important limiting case in this context, the even and odd coherent states, where the odd and even number states are filtered from coherent state, respectively, are considered. The optimal phase sensitivity for these limiting cases equals that of the squeezed vacuum. It is observed that the improvement in phase sensitivity is not in direct proportion to the nonclassicality of the input states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abramovici, A., Althouse, W.E., Drever, R.W.P., Gursel, Y., Kawamura, S., Raab, F.J., Shoemaker, D., Sievers, L., Spero, R.E., Thorne, K.S., Vogt, R.E., Weiss, R., Whitcomb, S.E., Zucker, M.E.: Ligo the laser interferometer gravitational-wave observatory. Science 256(5055), 325–333 (1992). https://doi.org/10.1126/science.256.5055.325

    Article  ADS  Google Scholar 

  2. Ataman, S., Preda, A., Ionicioiu, R.: Phase sensitivity of a Mach–Zehnder interferometer with single-intensity and difference-intensity detection. Phys. Rev. A 98, 043856 (2018). https://doi.org/10.1103/PhysRevA.98.043856

    Article  ADS  Google Scholar 

  3. Barnett, S., Fabre, C., Maitre, A.: Ultimate quantum limits for resolution of beam displacements. Eur. Phys. J. D Atomic Mol. Opt. Plasma Phys. 22(3), 513–519 (2003). https://doi.org/10.1140/epjd/e2003-00003-3

    Article  Google Scholar 

  4. Birrittella, R., Mimih, J., Gerry, C.C.: Multiphoton quantum interference at a beam splitter and the approach to Heisenberg-limited interferometry. Phys. Rev. A 86, 063828 (2012). https://doi.org/10.1103/PhysRevA.86.063828

    Article  ADS  Google Scholar 

  5. Bondurant, R.S., Shapiro, J.H.: Squeezed states in phase-sensing interferometers. Phys. Rev. D 30, 2548–2556 (1984). https://doi.org/10.1103/PhysRevD.30.2548

    Article  ADS  Google Scholar 

  6. Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000). https://doi.org/10.1103/PhysRevLett.85.2733

    Article  ADS  Google Scholar 

  7. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994). https://doi.org/10.1103/PhysRevLett.72.3439

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Buzek, V., Knight, P.L.: I: quantum interference, superposition states of light, and nonclassical effects. Prog. Opt. 34, 1–158 (1995). https://doi.org/10.1016/S0079-6638(08)70324-X

    Article  ADS  Google Scholar 

  9. Campos, R.A., Gerry, C.C., Benmoussa, A.: Optical interferometry at the heisenberg limit with twin fock states and parity measurements. Phys. Rev. A 68, 023810 (2003). https://doi.org/10.1103/PhysRevA.68.023810

    Article  ADS  Google Scholar 

  10. Caves, C.M.: Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980). https://doi.org/10.1103/PhysRevLett.45.75

    Article  ADS  Google Scholar 

  11. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981). https://doi.org/10.1103/PhysRevD.23.1693

    Article  ADS  Google Scholar 

  12. Cramer, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  13. Demkowicz-Dobrzanski, R., Jarzyna, M., Kolodynski, J.: Quantum limits in optical interferometry. Prog. Opt. 60, 345–435 (2015)

    Article  ADS  Google Scholar 

  14. Dodonov, V.V., Manko, V.I.: Theory of Nonclassical States of Light. Taylor and Francis Group, London (2003)

    Google Scholar 

  15. Erol, V., Ozaydin, F., Altintas, A.A.: Analysis of entanglement measures and locc maximized quantum Fisher information of general two qubit systems. Sci. Rep. 4, 5422 (2014). https://doi.org/10.1038/srep05422

    Article  ADS  Google Scholar 

  16. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011). https://doi.org/10.1038/nphys1958

    Article  Google Scholar 

  17. Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  18. Gerry, C.C., Mimih, J.: Heisenberg-limited interferometry with pair coherent states and parity measurements. Phys. Rev. A 82, 013831 (2010). https://doi.org/10.1103/PhysRevA.82.013831

    Article  ADS  Google Scholar 

  19. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006). https://doi.org/10.1103/PhysRevLett.96.010401

    Article  ADS  MathSciNet  Google Scholar 

  20. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011). https://doi.org/10.1038/nphoton.2011.35

    Article  ADS  Google Scholar 

  21. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963). https://doi.org/10.1103/PhysRev.131.2766

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963). https://doi.org/10.1103/PhysRev.130.2529

    Article  ADS  MathSciNet  Google Scholar 

  23. Hariharan, P.: Optical Interferometry. Elsevier, Amsterdam (2003)

    Google Scholar 

  24. Hayashi, M.: Phase estimation with photon number constraint. Prog. Inform. 8, 81–87 (2011)

    Article  Google Scholar 

  25. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1(2), 231–252 (1969). https://doi.org/10.1007/BF01007479

    Article  ADS  MathSciNet  Google Scholar 

  26. Jarzyna, M., Demkowicz-Dobrzanski, R.: Quantum interferometry with and without an external phase reference. Phys. Rev. A 85, 011801 (2012). https://doi.org/10.1103/PhysRevA.85.011801

    Article  ADS  Google Scholar 

  27. Jonathan, P.D.: Quantum optical metrology the lowdown on high-N00N states. Contemp. Phys. 49(2), 125–143 (2008). https://doi.org/10.1080/00107510802091298

    Article  Google Scholar 

  28. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011). https://doi.org/10.1103/PhysRevLett.107.083601

    Article  ADS  Google Scholar 

  29. Joo, J., Park, K., Jeong, H., Munro, W.J., Nemoto, K., Spiller, T.P.: Quantum metrology for nonlinear phase shifts with entangled coherent states. Phys. Rev. A 86, 043828 (2012). https://doi.org/10.1103/PhysRevA.86.043828

    Article  ADS  Google Scholar 

  30. Kenfack, A., Zyczkowski, K.: Negativity of the wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclassical Opt. 6(10), 396–404 (2004). https://doi.org/10.1088/1464-4266/6/10/003

    Article  ADS  MathSciNet  Google Scholar 

  31. Kok, P., Lovett, B.W.: Optical Quantum Information Processing. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  32. Lang, M.D., Caves, C.M.: Optimal quantum-enhanced interferometry using a laser power source. Phys. Rev. Lett. 111, 173601 (2013). https://doi.org/10.1103/PhysRevLett.111.173601

    Article  ADS  Google Scholar 

  33. Lang, M.D., Caves, C.M.: Optimal quantum-enhanced interferometry. Phys. Rev. A 90, 025802 (2014). https://doi.org/10.1103/PhysRevA.90.025802

    Article  ADS  Google Scholar 

  34. Liu, J., Lu, X.M., Sun, Z., Wang, X.: Quantum multiparameter metrology with generalized entangled coherent state. J. Phys. A Math. Theor. 49(11), 115302 (2016). https://doi.org/10.1088/1751-8113/49/11/115302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lu, X.M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010). https://doi.org/10.1103/PhysRevA.82.042103

    Article  ADS  Google Scholar 

  36. Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011). https://doi.org/10.1103/PhysRevA.84.022302

    Article  ADS  Google Scholar 

  37. Meher, N., Sivakumar, S.: Number state filtered coherent states. Quantum Inf. Process. 17(9), 233 (2018). https://doi.org/10.1007/s11128-018-1995-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Ozaydin, F., Altintas, A., Yesilyurt, C., Bugu, S., Erol, V.: Quantum Fisher information of bipartitions of w states. Acta Phys. Pol. A 127(4), 1233–1235 (2015). https://doi.org/10.12693/APhysPolA.127.1233

    Article  Google Scholar 

  39. Ozaydin, F., Altintas, A.A.: Quantum metrology: surpassing the shot-noise limit with Dzyaloshinskii–Moriya interaction. Sci. Rep. 5, 16360 (2015). https://doi.org/10.1038/srep16360

    Article  ADS  Google Scholar 

  40. Rao, C.R.: Linear Statistical Inference and its Applications. Wiley, Hoboken (1973)

    Book  Google Scholar 

  41. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963). https://doi.org/10.1103/PhysRevLett.10.277

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Tan, Q.S., Liao, J.Q., Wang, X., Nori, F.: Enhanced interferometry using squeezed thermal states and even or odd states. Phys. Rev. A 89, 053822 (2014). https://doi.org/10.1103/PhysRevA.89.053822

    Article  ADS  Google Scholar 

  43. Wang, B.X., Tao, M.J., Ai, Q., Xin, T., Lambert, N., Ruan, D., Cheng, Y.C., Nori, F., Deng, F.G., Long, G.L.: Efficient quantum simulation of photosynthetic light harvesting. NPJ Quantum Inf. 4(1), 52 (2018). https://doi.org/10.1038/s41534-018-0102-2

    Article  ADS  Google Scholar 

  44. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

NM acknowledges Indian Institute of Technology Kanpur for postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilakantha Meher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meher, N., Sivakumar, S. Enhancing phase sensitivity with number state filtered coherent states. Quantum Inf Process 19, 51 (2020). https://doi.org/10.1007/s11128-019-2553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2553-6

Keywords

Navigation