Skip to main content
Log in

Foundation of quantum optimal transport and applications

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum optimal transportation seeks an operator which minimizes the total cost of transporting a quantum state to another state, under some constraints that should be satisfied during transportation. We formulate this issue by extending the Monge–Kantorovich problem, which is a classical optimal transportation theory, and present some applications. As an example, we address infinitely repeated quantum games and establish the folk theorem of the quantum prisoners’ dilemma, which claims mutual cooperation can be an equilibrium of the infinitely repeated quantum game. We also exhibit a series of examples which show generic and practical advantages of the abstract quantum optimal transportation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Monge, G.: Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie Royale des Sciences de Paris 666 (1781)

  2. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999). arxiv:quant-ph/9806088

    Article  ADS  MathSciNet  Google Scholar 

  3. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999). arxiv:quant-ph/9804010

    Article  ADS  MathSciNet  Google Scholar 

  4. Li, Q., Chen, M., Perc, M., Iqbal, A., Abbott, D.: Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks. Sci. Rep. 3, 2949 (2013)

    Article  ADS  Google Scholar 

  5. Li, Q., Iqbal, A., Perc, M., Chen, M., Abbott, D.: Coevolution of quantum and classical strategies on evolving random networks. PloS One 8, e68423 (2013)

    Article  ADS  Google Scholar 

  6. Shah Khan, F., Solmeyer, N., Balu, R., Humble, T.: Quantum games: a review of the history, current state, and interpretation, arXiv e-prints (2018). arXiv:1803.07919

  7. Abreu, D.: On the theory of infinitely repeated games with discounting. Econometrica 56, 383 (1988)

    Article  MathSciNet  Google Scholar 

  8. Fudenberg, D., Maskin, E.: The folk theorem in repeated games with discounting or with incomplete information. Econometrica 54, 533 (1986)

    Article  MathSciNet  Google Scholar 

  9. Iqbal, A., Toor, A.H.: Quantum repeated games. Phys. Lett. A 300, 541 (2002). arxiv:quant-ph/0203044

    Article  ADS  MathSciNet  Google Scholar 

  10. Frackiewicz, P.: Quantum repeated games revisited. J. Phys. A Math. Gen. 45, 085307 (2012). arxiv:1109.3753

    Article  ADS  MathSciNet  Google Scholar 

  11. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)

    Article  ADS  Google Scholar 

  12. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., et al.: Quantum annealing with manufactured spins. Nature 473, 194 (2011)

    Article  ADS  Google Scholar 

  13. Ikeda, K., Nakamura, Y., Humble, T.S.: Application of quantum annealing to nurse scheduling problem. Sci. Rep. 9, 12837 (2019)

    Article  ADS  Google Scholar 

  14. Ikeda, K.: Universal Computation with Quantum Fields, arXiv e-prints (2019). arXiv:1910.02833

  15. Kantorovich, L.: On the transfer of masses. Dokl. Acad. Nauk. USSR 37, 199 (1942)

    Google Scholar 

  16. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. Nash, J. F.: Equilibrium points in n-person games, Proceedings of the National Academy of Sciences 36 (1950) 48. https://www.pnas.org/content/36/1/48.full.pdf

    Article  ADS  MathSciNet  Google Scholar 

  18. Compte, O.: On failing to cooperate when monitoring is private. J. Econ. Theory 102, 151 (2002)

    Article  MathSciNet  Google Scholar 

  19. Matsushima, H.: On the theory of repeated games with private information: part i: anti-folk theorem without communication. Econ. Lett. 35, 253 (1991)

    Article  Google Scholar 

  20. Caglioti, E., Golse, F., Paul, T.: Quantum optimal transport is cheaper, arXiv e-prints (2019). arXiv:1908.01829

Download references

Acknowledgements

I thank Travis Humble for useful discussion about quantum computation and game theory. I came up with an idea of showing the folk theorem while I discussed with him. Also, I was benefited by discussing with Katsuya Hashino, Kin-ya Oda, and Satoshi Yamaguchi. The author was partly supported by Grant-in-Aid for JSPS Research Fellow, No. 19J11073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Ikeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, K. Foundation of quantum optimal transport and applications. Quantum Inf Process 19, 25 (2020). https://doi.org/10.1007/s11128-019-2519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2519-8

Keywords

Navigation