Skip to main content
Log in

A weak limit theorem for a class of long-range-type quantum walks in 1d

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We derive the weak limit theorem for a class of long-range-type quantum walks. To do it, we analyze spectral properties of a time evolution operator and prove that modified wave operators exist and are complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp 37–49. ACM, New York (2001)

  3. Amrein, W.O., de Monvel, A.B., Georgescu, V.: \(C_{0}\)-Groups, Commutator Methods and Spectral Theory of \(N\)-Body Hamiltonians, of Progress in Mathematics, vol. 135. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  4. Asch, J., Bourget, O., Joye, A.: Spectral stability of unitary network models. Rev. Math. Phys 27(7), 1530004 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cantero, M.J., Grümbaum, F.A., Moral, L., Velázquez, L.: One dimensional quantum walks with one defect. Rev. Math. Phys. 24, 1250002 (2012)

    Article  MathSciNet  Google Scholar 

  6. Childs, A.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294(2), 581–603 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chisaki, K., Hamada, M., Konno, N., Segawa, E.: Limit theorems for discrete-time quantum walks on trees. Interdiscip. Inf. Sci. 15, 423–429 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Chisaki, K., Konno, N., Segawa, E.: Limit theorems for the discrete-time quantum walk on a graph with joined half lines. Quantum Inf. Process. 12(3 and 4), 314–333 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Dereziński, J., Gérard, C.: Scattering Theory of Classical and Quantum N-particle Systems. Springer, Berlin (1997)

    Book  Google Scholar 

  10. Endo, S., Endo, T., Konno, N., Segawa, E., Takei, M.: Limit theorems of a two-phase quantum walk with one defect. Quantum Inf. Comput. 15(15–16), 1373–1396 (2015)

    MathSciNet  Google Scholar 

  11. Endo, S., Endo, T., Konno, N., Segawa, E., Takei, M.: Weak limit theorem of a two-phase quantum walk with one defect. Interdiscip. Inf. Sci. 22, 17–29 (2016)

    MathSciNet  Google Scholar 

  12. Fuda, T., Funakawa, D., Suzuki, A.: Weak limit theorem for a one-dimensional split-step quantum walk. Rev. Math. Pures Appl. 64(2–3), 157–165 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Fuda, T., Funakawa, D., Suzuki, A.: Localization of a milti-dimensional quantum walk with one defect. Quantum Inf. Process. 16, 203 (2017). https://doi.org/10.1007/s11128-017-1653-4

    Article  ADS  MATH  Google Scholar 

  14. Fuda, T., Funakawa, D., Suzuki, A.: Localization for a one-dimensional split-step quantum walk with bound states robust against perturbations. J. Math. Phys. (2018). https://doi.org/10.1063/1.5035300

    Article  MathSciNet  MATH  Google Scholar 

  15. Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  16. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), pp 212–219 (1996)

  17. Gudder, S.P.: Quantum Probability. Probability and Mathematical Statistics. Academic Press Inc., Boston (1988)

    MATH  Google Scholar 

  18. Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)

    Article  ADS  Google Scholar 

  19. Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1, 245–354 (2002)

    Article  MathSciNet  Google Scholar 

  20. Konno, N.: Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Inf. Process. 9(3), 405–418 (2010)

    Article  MathSciNet  Google Scholar 

  21. Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Sci. Jpn. 57, 1179–1195 (2005)

    Article  MathSciNet  Google Scholar 

  22. Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Weak limit theorem for a nonlinear quantum walk. Quantum Inf. Process. 17, 215 (2018). https://doi.org/10.1007/s11128-018-1981-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Matsue, K., Matsuoka, L., Ogurisu, O., Segawa, E.: Resonant-tunneling in discrete-time quantum walk. Quantum Stud. Math. Found. 6(1), 35–44 (2019)

    Article  MathSciNet  Google Scholar 

  24. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. Morioka, H., Segawa, E.: Detection of edge defects by embedded eigenvalues of quantum walks. Quantum Inf. Process. 18, 283 (2019). https://doi.org/10.1007/s11128-019-2398-z

    Article  ADS  MathSciNet  Google Scholar 

  26. Ohno, H.: Unitary equivalent classes of one-dimensional quantum walks. Quantum inf. Process. 15(9), 3599–3617 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ohno, H.: Unitary equivalent classes of one-dimensional quantum walks II. Quantum inf. Process. 1, 2–3 (2017). https://doi.org/10.1007/s11128-017-1741-5

    Article  ADS  Google Scholar 

  28. Reed, M., Simon, B.: Methods of Modern Mathematical Physics Scattering Theory, vol. 3. Academic Press, Boston (1980)

    MATH  Google Scholar 

  29. Richard, S., Suzuki, A., Tiedra de Aldecoa, R.: Quantum walks with an anisotropic coin I: spectral theory. Lett. Math. Phys. 108(2), 331–357 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Richard, S., Suzuki, A., de Aldecoa, R.T.: Quantum walks with an anisotropic coin II: scattering theory. Lett. Math. Phys. (2018). https://doi.org/10.1007/s11005-018-1100-1

    Article  MATH  Google Scholar 

  31. Richard, S., Tiedra de Aldecoa, R.: New formulae for the wave operators for a rank one interaction. Integral Equ. Oper. Theory 66, 283–292 (2010)

    Article  MathSciNet  Google Scholar 

  32. Richard, S., Tiedra de Aldecoa, R.: New expressions for the wave operators of Schrödinger operators in \({\mathbb{R}}^3\). Lett. Math. Phys. 103, 1207–1221 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Segawa, E., Suzuki, A.: Generator of an abstract quantum walk. Quantum Stud. Math. Found. 3(1), 11–30 (2016)

    Article  MathSciNet  Google Scholar 

  34. Shikano, Y.: From discrete time quantum walk to continuous time quantum walk in limit distribution. J. Comput. Theor. Nanosci. 10, 1558–1570 (2013)

    Article  Google Scholar 

  35. Shor, P.W.: Polynomial time algorithms for prime factorization and discrete algorithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  36. Strauch, F.W.: Connecting the discrete and continuous-time quantum walks. Phys. Rev. A 74, 030301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. Suzuki, A.: Asymptotic velocity of a position-dependent quantum walk. Quamtum Inf. Process. 15(1), 103–119 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)

    Article  MathSciNet  Google Scholar 

  39. Wada, K.: Absence of wave operators for one-dimensional quantum walks. Lett. Math. Phys. (2019). https://doi.org/10.1007/s11005-019-01197-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Watanabe, K., Kobayashi, N., Katori, M., Konno, N.: Limit distributions of two-dimensional quantum walks. Phys. Rev. A 77, 062331 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank A. Suzuki for various comments and constant encouragements. The author would also like to thank H. Ohno and S. Richard for helpful comments. This work was supported by the Research Institute of Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Wada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, K. A weak limit theorem for a class of long-range-type quantum walks in 1d. Quantum Inf Process 19, 2 (2020). https://doi.org/10.1007/s11128-019-2491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2491-3

Keywords

Mathematics Subject Classification

Navigation