Skip to main content
Log in

Supersymmetry for chiral symmetric quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum walks have attracted attention as a promising platform realizing topological phenomena, and many physicists have introduced various types of indices to characterize topologically protected bound states that are robust against perturbations. In this paper, we introduce an index from a supersymmetric point of view. This allows us to define indices for all chiral symmetric quantum walks such as multi-dimensional split-step quantum walks and quantum walks on graphs, for which there has been no index theory. Moreover, the index gives a lower bound on the number of bound states robust against compact perturbations. We also calculate the index for several concrete examples including the unitary transformation that appears in Grover’s search algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507–518 (2003)

    Article  Google Scholar 

  2. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the IEEE Symposium on Foundations of Computer Science, pp. 22–31 (2004)

  3. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithm, pp. 1099–1108 (2005)

  4. Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88, 121406 (2013)

    Article  ADS  Google Scholar 

  5. Asbóth, J.K., Tarasinski, B., Delplace, P.: Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems. Phys. Rev. B 90, 125143 (2014)

    Article  ADS  Google Scholar 

  6. Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)

    Article  MathSciNet  Google Scholar 

  7. Avron, J., Seiler, R., Simon, B.: Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cedzich, C., Geib, T., Grünbaum, F.A., Stahl, C., Veláazquez, L., Werner, A.H., Werner, R.F.: The topological classification of one-dimensional symmetric quantum walks. Ann. Henri Poincaré 19, 325–383 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cedzich, C., Geib, T., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Complete homotopy invariants for translation invariant symmetric quantum walks on a chain. Quantum 2, 95 (2018)

    Article  Google Scholar 

  10. Fuda, T., Funakawa, D., Suzuki, A.: Localization of a multi-dimensional quantum walk with one defect. Quantum Inf. Process. 16, 203 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fuda, T., Funakawa, D., Suzuki, A.: Localization for a one-dimensional split-step quantum walk with bound states robust against perturbations. J. Math. Phys. 59, 082201 (2018). https://doi.org/10.1063/1.5035300

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gesztesy, F., Simon, B.: Topological invariance of the Witten index. J. Funct. Anal. 79, 91–102 (1988)

    Article  MathSciNet  Google Scholar 

  13. Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310, 419–454 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceeding of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  15. Higuchi, Yu., Segawa, E.: The spreading behavior of quantum walks induced by drifted random walks on some magnifier graph. Quantum Inf. Comput. 17, 0399–0414 (2017)

    MathSciNet  Google Scholar 

  16. Higuchi, Yu., Segawa, E.: Quantum walks induced by Dirichlet random walks on infinite trees. J. Phys. A: Math. Theor. 51, 075303 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267, 4197–4235 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Process. 11, 1107–1148 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kitagawa, T., Berg, E., Rudner, M., Demler, E.: Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010)

    Article  ADS  Google Scholar 

  21. Kitagawa, T., Broome, M.A., Fedrizzi, A., Rudner, M.S., Berg, E., Kassal, I., Aspuru-Guzik, A., Demler, E., White, A.G.: Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882 (2012)

    Article  ADS  Google Scholar 

  22. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010)

    Article  ADS  Google Scholar 

  23. Konno, K., Portugal, R., Sato, I., Segawa, E.: Partition-based discrete-time quantum walks. Qunatum Inf. Process. 17, 100 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: ACM Symposium on Theory of Computing, pp. 575–584 (2007)

  25. Magniez, F., Nayak, A., Richter, P., Santha, M.: On the hitting times of quantum versus random walks. Algorithmica 63, 91–116 (2012)

    Article  MathSciNet  Google Scholar 

  26. Matsue, K., Ogurisu, O., Segawa, E.: A note on the spectral mapping theorem of quantum walk models. Interdiscip. Inf. Sci. 23, 105–114 (2017)

    MathSciNet  Google Scholar 

  27. Mochizuki, K., Kim, D., Obuse, H.: Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss. Phys. Rev. A 93, 062116 (2016)

    Article  ADS  Google Scholar 

  28. Obuse, H., Asbóth, J.K., Nishimura, Y., Kawakami, N.: Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk. Phys. Rev. B 92, 045424 (2015)

    Article  ADS  Google Scholar 

  29. Obuse, H., Kawakami, N.: Topological phases and delocalization of quantum walks in random environments. Phys. Rev. B 84, 195139 (2011)

    Article  ADS  Google Scholar 

  30. Portugal, R.: Quantum Walks and Search Algorithms. Quantum Science and Technology. Springer, Berlin (2013)

    Book  Google Scholar 

  31. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15, 85 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sadel, C., Schulz-Baldes, H.: Topological boundary invariants for Floquet systems and quantum walks. Math. Phys. Anal. Geom. 20, 22 (2017)

    Article  MathSciNet  Google Scholar 

  33. Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. J. Comput. Theor. Nanosci. 10, 1583–1590 (2013)

    Article  Google Scholar 

  34. Segawa, E., Suzuki, A.: Generator of an abstract quantum walk. Quantum Stud. Math. Found. 3, 11–30 (2016)

    Article  MathSciNet  Google Scholar 

  35. Segawa, E., Suzuki, A.: Spectral mapping theorem of an abstract quantum walk. Quantum Inf. Process. 18, 333 (2019). https://doi.org/10.1007/s11128-019-2448-6

    Article  ADS  MathSciNet  Google Scholar 

  36. Shenvi, N., Kempe, J., Whaley, K.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  37. Suzuki, A., Tanaka, Y.: The witten index for 1D supersymmetric quantum walks with anisotropic coins. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-019-2485-1

  38. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)

  39. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer, Berlin (1992)

    Book  Google Scholar 

  40. Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  41. Xiao, L., Zhan, X., Bian, Z.H., Wang, K.K., Zhang, X., Wang, X.P., Li, J., Mochizuki, K., Kim, D., Kawakami, N., Yi, W., Obuse, H., Sanders, B.C., Xue, P.: Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. JP18K03327 and by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University. The author thanks Y. Matsuzawa and Y. Tanaka for helpful comments on the index formula for finite-dimensional cases and for one-dimensional split-step quantum walks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akito Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A. Supersymmetry for chiral symmetric quantum walks. Quantum Inf Process 18, 363 (2019). https://doi.org/10.1007/s11128-019-2474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2474-4

Keywords

Navigation