Skip to main content
Log in

Energy transfer, correlations and decoherence in a dimer in terms of the two-level atomic distances

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this manuscript, we study the coherent single-excitation energy transfer for a dimer system consisting of a donor and an acceptor modeled by two-level systems (TLSs), which are immersed in common thermal environment. We illustrate the effects of the distance between TLSs and temperature of the thermal reservoir on the energy transfer process considering collective damping and dipole–dipole interaction. Concretely, the control and enhancement of the probability during the time evolution is performed by a suitable choice of the distance between TLSs with respect to the temperature of the reservoir. On the other hand, we study the time evolution of the quantum and classical correlations of the TLSs-state through calculating concurrence and quantum discord. We find that the dynamical behavior of quantum and classical correlations dynamics in thermal reservoir is similar to vacuum reservoir with slight decrease in the amount of correlations. These correlations are also very sensitive to the TLSs-distance and when the distance becomes significantly large, the amount of correlations exponentially decrease with the time. Finally, we explore the relationship between the probability and correlations during the evolution and shows that quantum and classical correlations can be created during the process of excitation energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6, 462 (2010)

    Article  Google Scholar 

  2. Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mancal, T., Cheng, Y.-C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  3. Lee, H., Cheng, Y.-C., Fleming, G.R.: Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462 (2007)

    Article  ADS  Google Scholar 

  4. Collini, E., Wong, C., Wilk, K., Curmi, P., Brumer, P., Scholes, G.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644 (2010)

    Article  ADS  Google Scholar 

  5. Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B. 113, 9942 (2009)

    Article  Google Scholar 

  6. Panitchayangkoon, G., Hayes, D., Fransted, K., Caram, J., Harel, E., Wen, J., Blankenship, R., Engel, G.: Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 107, 12766 (2010)

    Article  ADS  Google Scholar 

  7. Liao, J.-Q., Huang, J.-F., Kuang, L.-M., Sun, C.P.: Coherent excitation-energy transfer and quantum entanglement in a dimer. Phys. Rev. A 82, 052109 (2010)

    Article  ADS  Google Scholar 

  8. Richards, G.H., Wilk, K.E., Curmi, P.M.G., Quiney, H.M., Davis, J.A.: Coherent vibronic coupling in light-harvesting complexes from photosynthetic marine algae. J. Phys. Chem. Lett. 3, 272 (2012)

    Article  Google Scholar 

  9. Calhoun, T., Ginsberg, N., Schlau-Cohen, G., Cheng, Y.-C., Ballottari, M., Bassi, R., Fleming, G.: Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B. 113, 16291 (2009)

    Article  Google Scholar 

  10. Ishizaki, A., Calhoun, T., Schlau-Cohen, G., Fleming, G.: Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319 (2010)

    Article  Google Scholar 

  11. Scholak, T., de Melo, F., Wellens, T., Mintert, F., Buchleitner, A.: Efficient and coherent excitation transfer across disordered molecular networks. Phys. Rev. E 83, 021912 (2011)

    Article  ADS  Google Scholar 

  12. Olaya-Castro, A., Lee, C.F., Olsen, F.F., Johnson, N.F.: Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008)

    Article  ADS  Google Scholar 

  13. Liang, X.T., Zhang, W.M., Zhuo, Y.Z.: Decoherence dynamics of coherent electronic excited states in the photosynthetic purple bacterium Rhodobacter sphaeroides. Phys. Rev. E 81, 011906 (2010)

    Article  ADS  Google Scholar 

  14. Plenio, M., Huelga, S.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)

    Article  ADS  Google Scholar 

  15. Ishizaki, A., Fleming, G.R.: Quantum coherence in photosynthetic light harvesting. Ann. Rev. Condens. Matter Phys. 3, 333 (2012)

    Article  Google Scholar 

  16. Ishizaki, A., Fleming, G.: Quantum superpositions in photosynthetic light harvesting: delocalization and entanglement. New J. Phys. 12, 055004 (2010)

    Article  ADS  Google Scholar 

  17. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

    Article  ADS  Google Scholar 

  18. Caram, J.R., Engel, G.S.: Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes. Faraday Discuss. 153, 93 (2011)

    Article  ADS  Google Scholar 

  19. Panitchayangkoon, G., et al.: Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 107, 12766 (2010)

    Article  ADS  Google Scholar 

  20. Collini, E., et al.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature (London) 463, 644 (2010)

    Article  ADS  Google Scholar 

  21. Miller, W.H.: Perspective: quantum or classical coherence? J. Chem. Phys. 136, 210901 (2012)

    Article  ADS  Google Scholar 

  22. Sarovar, M., Cheng, Y.-C., Whaley, K.: Environmental correlation effects on excitation energy transfer in photosynthetic light harvesting. Phys. Rev. E 83, 011906 (2011)

    Article  ADS  Google Scholar 

  23. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

    Article  ADS  Google Scholar 

  24. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

    Article  ADS  Google Scholar 

  25. Harel, E., Engel, G.S.: Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. USA “PNAS” 109, 706 (2012)

    Article  ADS  Google Scholar 

  26. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  27. Shrödinger, E.: Discussion of probability relations between separated system. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  29. Bell, J.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  30. Clauser, J., Horne, M., Shimony, A., Holt, R.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  31. Huver, S.D., Wildfeuer, C.F., Dowling, J.P.: Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008)

    Article  ADS  Google Scholar 

  32. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  34. Popescu, S., Rohrlich, D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  36. Berrada, K.: Classical and quantum correlations for two mode coherent state superposition. Opt. Commun. 285, 2227 (2011)

    Article  ADS  Google Scholar 

  37. Berrada, K., Khalek, S.A., Ooi, C.H.R.: Quantum metrology with entangled spin-coherent states of two modes. Phys. Rev. A 86, 033823 (2012)

    Article  ADS  Google Scholar 

  38. Berrada, K.: Improving quantum phase estimation via power-law potential systems. Laser Phys. 24, 065201 (2014)

    Article  ADS  Google Scholar 

  39. Berrada, K.: Protecting the precision of estimation in a photonic crystal. J. Opt. Soc. Am. B 32, 571 (2015)

    Article  ADS  Google Scholar 

  40. Berrada, K.: Quantum metrology with classical light states in non-Markovian lossy channels. J. Opt. Soc. Am. B 34, 1912 (2017)

    Article  ADS  Google Scholar 

  41. Berrada, K.: Quantum metrology with SU(1,1) coherent states in the presence of nonlinear phase shifts. Phys. Rev. A 88, 013817 (2013)

    Article  ADS  Google Scholar 

  42. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  43. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  44. Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 74, 042305 (2006)

    Article  ADS  Google Scholar 

  45. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  46. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  47. Bylicka, B., Chruscinski, D.: Witnessing quantum discord in \(2\times N\) systems. Phys. Rev. A 81, 062102 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  48. Rahimi, R., Saitoh, A.: Single-experiment-detectable nonclassical correlation witness. Phys. Rev. A 82, 022314 (2010)

    Article  ADS  Google Scholar 

  49. Berrada, K., Fanchini, F.F., Abdel-Khalek, S.: Quantum correlations between each qubit in a two-atom system and the environment in terms of interatomic distance. Phy. Rev. A 85, 052315 (2012)

    Article  ADS  Google Scholar 

  50. Lehmberg, R.H.: Radiation from an N-atom system. I. General formalism. Phys. Rev. A 2, 883 (1970)

    Article  ADS  Google Scholar 

  51. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Berrada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrada, K., Alkaoud, A. Energy transfer, correlations and decoherence in a dimer in terms of the two-level atomic distances. Quantum Inf Process 18, 184 (2019). https://doi.org/10.1007/s11128-019-2276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2276-8

Keywords

Navigation