Skip to main content
Log in

Revisiting integer factorization using closed timelike curves

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Closed timelike curves are relativistically valid objects allowing time travel to the past. Treating them as computational objects opens the door to a wide range of results which cannot be achieved using non-relativistic quantum mechanics. Recently, research in classical and quantum computation has focused on effectively harnessing the power of these curves. In particular, Brun (Found Phys Lett 16:245–253, 2003) has shown that CTCs can be utilized to efficiently solve problems like factoring and quantified satisfiability problem. In this paper, we find a flaw in Brun’s algorithm and propose a modified algorithm to circumvent the flaw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gödel, K.: An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447–450 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bonnor, W.B.: The rigidly rotating relativistic dust cylinder. J. Phys. A Math. Gen. 13(6), 2121 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gott, J.R.: Closed timelike curves produced by pairs of moving cosmic strings: exact solutions. Phys. Rev. Lett. 66(9), 1126–1129 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hartle, J.B.: Unitarity and causality in generalized quantum mechanics for nonchronal spacetimes. Phys. Rev. D 49(12), 6543–6555 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Morris, M.S., Thorne, K.S., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61(13), 1446–1449 (1988)

    Article  ADS  Google Scholar 

  6. Thorne, K.S.: Closed timelike curves. In: Proceedings of the 13th International Conference on General Relativity and Gravitation (1993)

  7. Hawking, S.: The chronology protection conjecture. Phys. Rev. D 46, 603–611 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Deutsch, D.: Quantum mechanics near closed timelike lines. Phys. Rev. D 44, 3197–3217 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bennett, C.: Talk at QUPON, Wien (2005). http://www.research.ibm.com/people/b/bennetc/

  10. Lloyd, S., Maccone, L., Garcia-Patron, R., Giovannetti, V., Shikano, Y.: Closed timelike curves via post-selection: theory and experimental demonstration. Phys. Rev. D 84, 025007 (2011)

    Article  ADS  Google Scholar 

  11. Lloyd, S.: Closed timelike curves via post-selection: theory and experimental demonstration. Phys. Rev. Lett. 106, 040403 (2011)

    Article  ADS  Google Scholar 

  12. Gisin, N.: Weinberg’s non-linear quantum mechanics and superluminal communications. Phys. Lett. A 143, 1–2 (1990)

    Article  ADS  Google Scholar 

  13. Abrams, D.S. (MIT, LNS), Lloyd, S. (MIT): Nonlinear quantum mechanics implies polynomial time solution for NP complete and #P problems. Phys. Rev. Lett. 81, 3992–3995 (1998)

  14. Cassidy, M.J.: Nonlinearity in quantum theory and closed timelike curves. Phys. Rev. D 52, 5676–5680 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bacon, D.: Quantum computational complexity in the presence of closed timelike curves. Phys. Rev. A 70(3), 032309 (2004)

    Article  ADS  Google Scholar 

  16. Aaronson, S., Watrous, J.: Closed timelike curves make quantum and classical computing equivalent (2008). https://doi.org/10.1098/rspa.2008.0350

    Article  ADS  MathSciNet  Google Scholar 

  17. Brun, T.A., Harrington, J., Wilde, M.M.: Localized closed timelike curves can perfectly distinguish quantum states. Phys. Rev. Lett. 102(21), 210402 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ahn, D., Myers, C.R., Ralph, T.C., Mann, R.B.: Quantum state cloning in the presence of a closed timelike curve. Phys. Rev. A 88, 022332 (2013)

    Article  ADS  Google Scholar 

  19. DeJonghe, R., Frey, K., Imbo, T.: Discontinuous quantum evolutions in the presence of closed timelike curves. Phys. Rev. D 81, 087501 (2010). arXiv:0908.2655

    Article  ADS  Google Scholar 

  20. Pati, A.K., Chakrabarty, I., Agrawal, P.: Purification of mixed state with closed timelike curve is not possible (2010). arXiv:1003.4221

  21. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum channel. Probl. Inf. Transm. 9, 177–183 (1973)

    Google Scholar 

  22. Bennett, C.H., Leung, D., Smith, G., Smolin, J.A.: Can closed timelike curves or nonlinear quantum mechanics improve quantum state discrimination or help solve hard problems? Phys. Rev. Lett. 103(17), 170502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bennett, C.H., Leung, D., Smith, G., Smolin, J.: The impotence of nonlinearity: Why closed timelike curves and nonlinear quantum mechanics don’t improve quantum state discrimination, and haven’t been shown to dramatically speed up computation, if computation is defined in a natural, adversarial way. Rump Session Presentation at the 13th Workshop on Quantum Information Processing, Zurich (2010)

  24. Ralph, T.C., Myers, C.R.: Information flow of quantum states interacting with closed timelike curves. Phys. Rev. A 82, 062330 (2010)

    Article  ADS  Google Scholar 

  25. Cavalcanti, E.G., Menicucci, N.C.: Verifiable nonlinear quantum evolution implies failure of density matrices to represent proper mixtures (2010). arXiv:1004.1219

  26. Aaronson, S.: Quantum computing, postselection, and probabilistic polynomial-time. Proc. R. Soc. A 461(2063), 3473–3482 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. Aaronson, S., Bavarian, M., Gueltrini, G.: Computability theory of closed timelike curves (2016). arXiv:1609.05507

  28. Ringbauer, M., Broome, M.A., Myers, C.R., White, A.G., Ralph, T.C.: Experimental simulation of closed timelike curves. Nat. Commun. 5, 4145 (2015)

    Article  ADS  Google Scholar 

  29. Brun, T.A., Wilde, M.M.: Simulations of closed timelike curves. Found. Phys. 47, 375–391 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Yuan, X., Assad, S.M., Thompson, J., Haw, J.Y., Vedral, V., Ralph, T.C., Lam, P.K., Weedbrook, C., Gu, M.: Replicating the benefits of closed timelike curves without breaking causality. Npj Quantum Inf. 1, 15007 (2015). arXiv:1412.5596

  31. Dunlap, L.: The metaphysics of D-CTCs: on the underlying assumptions of Deutsch’s quantum solution to the paradoxes of time travel. Stud. Hist. Philos. Sci. 56, 39–47 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Chakrabarty, I., Pramanik, T., Pati, A.K., Agrawal, P.: CTC assisted PR box type correlation can lead to signaling. Quantum Inf. Comput. 14(13), 1251 (2014)

    MathSciNet  Google Scholar 

  33. Kumar, A., Chakrabarty, I., Pati, A.K., De, A.S., Sen, U.: Quantum no-go theorems in causality respecting systems in presence of closed timelike curves: tweaking the Deutsch condition (2018). arXiv:1511.08560

  34. Wallman, J.J., Bartlett, S.D.: Revisiting consistency conditions for quantum states of systems on closed timelike curves: an epistemic perspective (2010). arXiv:1005.2438

  35. Lobo, F., Crawford, P.: Time, closed timelike curves and causality. In: Buccheri, R., Saniga, M., Stuckey, W.M. (eds.) The Nature of Time: Geometry, Physics and Perception, pp. 289–296. Springer, Dordrecht (2003)

    Chapter  Google Scholar 

  36. Korotaev, S.M., Kiktenko, E.O.: Quantum causality in closed timelike curves. Phys. Scr. 90(8), 085101 (2015)

    Article  ADS  Google Scholar 

  37. Baumeler, Ä., Wolf, S.: Non-causal computation. Entropy 19, 326 (2017)

    Article  ADS  Google Scholar 

  38. Sami, S., Kumar, A., Chakrabarty, I., Pati, A.K., De, A.S., Sen, U.: A note on superposition of two unknown states using Deutsch CTC model. Mod. Phys. Lett. A 31(29), 1650170 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Pati, A.K., Chakrabarty, I., Agrawal, P.: Purification of mixed state with closed timelike curve is not possible. Phys. Rev. A 84, 062325 (2011)

    Article  ADS  Google Scholar 

  40. Bartkiewicz, M., Grudka, A., Horodecki, R., łodyga, J., Wychowaniec, J.: Closed timelike curves and the second law of thermodynamics (2017). arXiv:1711.08334

  41. Gedik, Z.: Eigenvalue formulation of quantum mechanics near closed timelike curves (2012). arXiv:1201.4870

  42. Moulick, S.R., Panigrahi, P.K.: Entanglement in a world with closed timelike curves (2015). arXiv:1511.00538

  43. Jung, E., Park, D.K.: Mixedness and entanglement in the presence of localized closed timelike curves (2015). arXiv:1506.02333

  44. Pati, A.K., Chakrabarty, I., Agrawal, P.: Quantum states, entanglement and closed timelike curves. AIP Conf. Proc. 1384, 76 (2011)

    Article  ADS  Google Scholar 

  45. Brun, T.: Computers with closed timelike curves can solve hard problems. Found. Phys. Lett. 16, 245–253 (2003)

    Article  MathSciNet  Google Scholar 

  46. Brun, T.A., Wilde, M.M.: Perfect state distinguishability and computational speedups with postselected closed timelike curves. Found. Phys. 42, 341 (2012). https://doi.org/10.1007/s10701-011-9601-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Akl, S.: Time travel: a new hypercomputational paradigm. Int. J. Unconv. Comput. 6, 329–351 (2010)

    Google Scholar 

  48. Moravec, H.: Time travel and computing (1991). https://philpapers.org/rec/MORTTA-2

  49. Aaronson, S.: NP-complete problems and physical reality. ACM SIGACT News 36(1), 30–52 (2005). arXiv:1412.5596

    Article  Google Scholar 

  50. Allen, J.M.A.: Treating time travel quantum mechanically. Phys. Rev. A 90(4), 042107 (2014). arXiv:1401.4933

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Paul.

Additional information

Part of this work was done while the first two authors were visiting R. C. Bose Centre for Cryptology and Security, Indian Statistical Institute, Kolkata, during the summer of 2017 (between the 6th and the 7th semesters of their Bachelor of Engineering course at Jadavpur University) for internship under the supervision of the third author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Adhikary, A. & Paul, G. Revisiting integer factorization using closed timelike curves. Quantum Inf Process 18, 30 (2019). https://doi.org/10.1007/s11128-018-2130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2130-4

Keywords

Navigation