Skip to main content
Log in

Sequential state discrimination with quantum correlation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The sequential unambiguous state discrimination (SSD) of two states prepared in arbitrary prior probabilities is studied and compared with three strategies that allow classical communication. The deviation from equal probabilities contributes to the success in all the tasks considered. When one considers at least one of the parties succeeds, the protocol with probabilistic cloning is superior to others, which is not observed in the special case with equal prior probabilities. We also investigate the roles of quantum correlations in SSD and show that the procedure requires discords but rejects entanglement. The left and right discords correspond to the part of information extracted by the first observer and the part left to his successor, respectively. Their relative difference is extended by the imbalance of prior probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  3. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002)

    Article  ADS  Google Scholar 

  4. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899–6905 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  6. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Pang, C.-Q., Zhang, F.-L., Xu, L.-F., Liang, M.-L., Chen, J.-L.: Sequential state discrimination and requirement of quantum dissonance. Phys. Rev. A 88, 052331 (2013)

    Article  ADS  Google Scholar 

  9. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bellomo, B., Giorgi, G.L., Galve, F., Lo Franco, R., Compagno, G., Zambrini, R.: Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012312 (2012)

    Article  ADS  Google Scholar 

  11. Roa, L., Retamal, J.C., Alid-Vaccarezza, M.: Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401 (2011)

    Article  ADS  Google Scholar 

  12. Zhang, F.-L., Chen, J.-L., Kwek, L.C., Vedral, V.: Requirement of dissonance in assisted optimal state discrimination. Sci. Rep. 3, 2134 (2013)

    Article  Google Scholar 

  13. Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303–306 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bergou, J.A., Herzog, U., Hillery, M.: Quantum filtering and discrimination between sets of Boolean functions. Phys. Rev. Lett. 90, 257901 (2003)

    Article  ADS  Google Scholar 

  17. Pang, S., Wu, S.: Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A 80, 052320 (2009)

    Article  ADS  Google Scholar 

  18. Roa, L., Retamal, J., Saavedra, C.: Quantum-state discrimination. Phys. Rev. A 66, 012103 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. Chen, P.-X., Bergou, J.A., Zhu, S.-Y., Guo, G.-C.: Ancilla dimensions needed to carry out positive-operator-valued measurement. Phys. Rev. A 76, 060303(R) (2007)

    Article  ADS  Google Scholar 

  20. Wu, X.-H., Gong, Y.-X.: Optical realization of the unambiguous discriminator for unknown quantum states. Phys. Rev. A 78, 042315 (2008)

    Article  ADS  Google Scholar 

  21. Zhou, T.: Unambiguous discrimination between two unknown qudit states. Quantum. Inf. Process. 11, 1669–1684 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bergou, J., Feldman, E., Hillery, M.: Extracting information from a qubit by multiple observers: toward a theory of sequential state discrimination. Phys. Rev. Lett. 111, 100501 (2013)

    Article  ADS  Google Scholar 

  23. Nagali, E., Felicetti, S., de Assis, P.-L., Ambrosio, V.D., Filip, R., Sciarrino, F.: Testing sequential quantum measurements: how can maximal knowledge be extracted? Sci. Rep. 2, 443 (2012)

    Article  Google Scholar 

  24. Filip, R.: Coherent versus incoherent sequential quantum measurements. Phys. Rev. A 83, 032311 (2011)

    Article  ADS  Google Scholar 

  25. Yerokhin, V., Shehu, A., Feldman, E., Bagan, E., Bergou, J.A.: Probabilistically perfect cloning of two pure states: geometric approach. Phys. Rev. Lett. 116, 200401 (2016)

    Article  ADS  Google Scholar 

  26. Namkung, M., Kwon, Y.: Optimal sequential state discrimination between two mixed quantum states. Phys. Rev. A 96, 022318 (2017)

    Article  ADS  Google Scholar 

  27. Duan, L.-M., Guo, G.-C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999–5002 (1998)

    Article  ADS  Google Scholar 

  28. Koashi, M., Winer, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  30. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  31. Hillery, M., Mimih, J.: Sequential discrimination of qudits by multiple observers. J. Phys. A Math. Theor. 50, 435301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF of China (Grant Nos.11675119, 11575125, 11105097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Lin Zhang.

Appendices

Calculations for protocol (2) that allows classical communication

The optimization of success probability for both Bob and Charlie to succeed in identifying the state can be written as

$$\begin{aligned}&{\mathrm{maximize:}}\ P^{(2)}=\left[ P_1\left( 1-q_1^b\right) +P_2\left( 1-q_2^b\right) \right] \left[ P_1'\left( 1-q_1^c\right) +P_2'\left( 1-q_2^c\right) \right] , \nonumber \\\end{aligned}$$
(21)
$$\begin{aligned}&{\mathrm{subject\ to:}}\ P_i'=\frac{P_i\left( 1-q_i^b\right) }{P_1\left( 1-q_1^b\right) +P_2\left( 1-q_2^b\right) },\quad i=1,2,\quad q_1^cq_2^c=q_1^bq_2^b=s^2, \nonumber \\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \qquad q_1^b,q_2^b,q_1^c,q_2^c\in \left[ s^2,1\right] , \quad P_1\in \left( 0,1/2\right] .\nonumber \\ \end{aligned}$$
(22)

The values of \(P_1'\) and \(P_2'\) are derived as

$$\begin{aligned} \mathrm {(i):}\, \, \,&P_1'=P_1^c,\, P_2'=P_2^c,\,&{\mathrm{when}}\, \frac{s^2}{1+s^2}\le P_1\le \frac{1}{2}; \end{aligned}$$
(23a)
$$\begin{aligned} \mathrm {(ii):}\, \, \,&P_1'=0,\, P_2'=1,\,&{\mathrm{when}}\, 0<P_1<\frac{t^2}{1+t^2}. \end{aligned}$$
(23b)

The case (i) in Eq. (23a) is divided into two subcases: (ia) \(\frac{s^2}{1+s^2}<P_1'\le \frac{1}{2}\) and (ib) \(0\le P_1'\le \frac{s^2}{1+s^2}\) which correspond to the results in Eq. (9a), (9b), respectively. The corresponding critical values \(P_{c1}\) in Eq. (9a) and (9b) can be acquired after solving the equation which satisfy the successive boundary condition.

For case (ii) in Eq. (23b), Bob gets optimized success probability for \(q_1^b=1\). Then, for the next observer Charlie, the conditional probability is found to be 0 (\(P_1'=0\)) according to Eq. (22) and the state \(|\psi _1\rangle \) is completely impossible to appear. Charlie can succeed in identifying the state with \(100\%\) probability because he has learned that his state is actually \(|\psi _2\rangle \). Thus, the results in Eq. (9c) are obtained.

Calculations for protocol (3) where probabilistic cloning occurs

Bob’s unitary cloning operation is given by [25]

$$\begin{aligned} U\left( |\Psi _i\rangle )|0\rangle \right) =\sqrt{\gamma _i}|\Psi _i\rangle |\Psi _i\rangle |\lambda _i\rangle +\sqrt{1-\gamma _i}|\beta \rangle |\beta \rangle |\lambda _0\rangle , \quad i=1,2, \end{aligned}$$
(24)

where \(|0\rangle \) is a initialized state of the ancillas and \(|\lambda _i\rangle \), \(|\lambda _0\rangle \) are orthogonal states of the flag associated with successful cloning and failure cloning, respectively. \(\gamma _i\) is the success probability of the cloning for the state \(|\Psi _i\rangle \) and \(|\beta \rangle \) is a genetic failure state.

Thus we can get an optimized successful cloning probability as

$$\begin{aligned}&{\mathrm{maximize:}}\ P^{\mathrm{cl}}=P_1\gamma _1+P_2\gamma _2 \end{aligned}$$
(25)
$$\begin{aligned}&{\mathrm{subject\ to:}}\quad s=\sqrt{\gamma _1\gamma _2}s^2\langle \lambda _1|\lambda _2\rangle +\sqrt{(1-\gamma _1)(1-\gamma _2)}. \end{aligned}$$
(26)

according to Eq. (24), where \(|\lambda _1\rangle =|\lambda _2\rangle \) is required for optimal cloning [25].

If we set \(\sin {\theta _i}=\sqrt{1-\gamma _i}\) (\(i=1,2\)) for \(0\le \theta _i\le \pi /2\), the variables \(x=\cos (\theta _1+\theta _2)\), \(y=\cos (\theta _1-\theta _2)\) are further introduced. Eq. (26) is equivalent to \(2s=(1+s^2)y-(1-s^2)x\). And then we find an intermediate parameter \(\omega \) which satisfies

$$\begin{aligned} x=\frac{1-\left( 1+s^2\right) \omega }{s}, y=\frac{1-\left( 1-s^2\right) \omega }{s}. \end{aligned}$$
(27)

The range of the parameter \(\omega \) is given in Eq. (31). It’s found that

$$\begin{aligned} \gamma _i=\frac{1}{2}\left[ 1+xy+(-1)^i\sqrt{\left( 1-x^2\right) \left( 1-y^2\right) }\right] . \end{aligned}$$
(28)

To seek the optimal value \(P_{\max }^{\mathrm{cl}}\), the following equation should be satisfied \((P_{\max }^{\mathrm{cl}})'=\frac{dP_{\max }^{\mathrm{cl}}}{d\omega }=0\). This equation is equivalent to \(P_1\gamma '_1+(1-P_1)\gamma '_2=0\), thus the following results are obtained

$$\begin{aligned} P_1=\frac{\gamma '_2}{\gamma '_2-\gamma '_1}, P_{\max }^{\mathrm{cl}}=\frac{\gamma '_2\gamma _1-\gamma '_1\gamma _2}{\gamma '_2-\gamma '_1}. \end{aligned}$$
(29)

where

$$\begin{aligned} \gamma '_i=\frac{d\gamma _i}{d\omega }=\frac{\sqrt{\gamma _i(1-\gamma _i)}}{s}\left[ -\frac{1+s^2}{\sqrt{1-x^2}}+(-1)^i\frac{1-s^2}{\sqrt{1-y^2}}\right] . \end{aligned}$$
(30)

And then, the conditional probabilities \(P_i^{\mathrm{cl}}\) (\(i=1,2\)) of \(|\Psi _i\rangle \) for the following two discriminations can be obtained as \(P_i^{\mathrm{cl}}=\frac{P_i\gamma _i}{P_1\gamma _1+P_2\gamma _2}\). Hence, for the optimized successful cloning probability, \(P_i\), \(P_i^{\mathrm{cl}}\), \(P_{\max }^{\mathrm{cl}}\), \(P_{b,\max }^{\mathrm{cl}}\) and \(P_{c,\max }^{\mathrm{cl}}\) are all obtained as parametric functions of \(\omega \) with the range

$$\begin{aligned} \omega _1\le \omega \le \omega _2,\quad \omega _1=\frac{1}{1+s},\quad \omega _2=\frac{1}{1+s^2}, \end{aligned}$$
(31)

where \(\omega _1\) and \(\omega _2\) correspond to the cases for \(P_1=P_2=\frac{1}{2}\) and \(P_1=0\), respectively.

At last, the optimal success probability for both Bob and Charlie to identify the state is obtained as

$$\begin{aligned}&{\mathrm{maximize:}}\ P^{(3)}=P_{\max }^{\mathrm{cl}}\left[ P_1^{\mathrm{cl}}\left( 1-q_1^b\right) +P_2^{\mathrm{cl}}\left( 1-q_2^b\right) \right] \left[ P_1^{\mathrm{cl}}\left( 1-q_1^c\right) \right. \nonumber \\&\left. \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad +P_2^{\mathrm{cl}}\left( 1-q_2^c\right) \right] \end{aligned}$$
(32)
$$\begin{aligned}&{\mathrm{subject\ to:}}\ q_1^cq_2^c=q_1^bq_2^b=s^2, \quad q_1^b,q_2^b,q_1^c, q_2^c\in \left[ s^2,1\right] . \end{aligned}$$
(33)

Thus, we can acquire the results in Eq. (11) analytically.

Optimal probability for at least one of Bob and Charlie succeeding in identifying the states

It is obvious that the optimized probability \(P_{\max }^*\) for one of their succeeding in discrimination for protocol (1) and (2) is equivalent to the results in Eq. (8). For SSD protocol, we can obtain the optimization as

$$\begin{aligned}&{\mathrm{maximize:}}\ P^{SSD*}=P_1\left( 1-q_1^bq_1^c\right) +P_2\left( 1-q_2^bq_2^c\right) \end{aligned}$$
(34)
$$\begin{aligned}&{\mathrm{subject\ to:}}\ P_1\in (0,1/2],\ q_1^bq_2^b=s^2/t^2,\ q_1^cq_2^c=t^2, \nonumber \\&\quad \quad \quad \qquad \qquad \qquad q_1^b,q_2^b\in \left[ s^2/t^2,1\right] ,\ q_1^c,q_2^c\in \left[ t^2,1\right] . \end{aligned}$$
(35)

Thus, this result is also equal to \(P_{\max }^{(1)}\). For protocol (3), the maximal probability is derived as

$$\begin{aligned}&{\mathrm{maximize:}}\ P^{(3)*}=1-\left( P_1^{\mathrm{cl}}q_1^b+P_2^{\mathrm{cl}}q_2^b\right) \left( P_1^{\mathrm{cl}}q_1^c+P_2^{\mathrm{cl}}q_2^c\right) \end{aligned}$$
(36)
$$\begin{aligned}&{\mathrm{subject\ to:}}\ q_1^bq_2^b=q_1^cq_2^c=s^2,\ q_1^b, q_2^b, q_1^c, q_2^c\in \left[ s^2,1\right] ,\ P_1\in \left( 0,1/2\right] \nonumber \\ \end{aligned}$$
(37)

Thus, the result in Eq. (12) can be easily obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JH., Zhang, FL. & Liang, ML. Sequential state discrimination with quantum correlation. Quantum Inf Process 17, 260 (2018). https://doi.org/10.1007/s11128-018-2033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2033-4

Keywords

Navigation