Skip to main content
Log in

Quantum coherence of two-qubit over quantum channels with memory

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using the axiomatic definition of the quantum coherence measure, such as the \(l_{1}\) norm and the relative entropy, we study the phenomena of two-qubit system quantum coherence through quantum channels where successive uses of the channels are memory. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels effect on quantum coherence have been discussed in detail. The results show that quantum channels with memory can efficiently protect coherence from noisy channels. Particularly, as channels with perfect memory, quantum coherence is unaffected by the phase damping as well as depolarizing channels. Besides, we also investigate the cohering and decohering power of quantum channels with memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Walls, D.F., Millburn, G.J.: Quantum Optics. Springer, New York (2010)

    Google Scholar 

  3. Aberg, J.: Quantifying Superposition. arXiv:quant-ph/0612146 (2006)

  4. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  5. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    Article  ADS  Google Scholar 

  6. Monda, D., Datta, C., Sazim, S.: Quantum coherence sets the quantum speed limit for mixed states. Phys. Lett. A 380, 689–695 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  8. Xu, J.W.: Quantifying coherence of Gaussian states. Phys. Rev. A 93, 032111 (2016)

    Article  ADS  Google Scholar 

  9. Monras, A., Checińska, A., Ekert, A.: Witnessing quantum coherence in the presence of noise. New J. Phys. 16, 063041 (2014)

    Article  ADS  Google Scholar 

  10. Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94, 052336 (2016)

    Article  ADS  Google Scholar 

  11. Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  12. Yuan, X., Zhou, H.Y., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  13. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    Article  ADS  Google Scholar 

  15. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  16. Chen, J.X., Johnston, N., Li, C.K., Plosker, S.: Quantifying the coherence of pure quantum states. arXiv:1601.06269 (2016)

  17. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  18. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  19. Qi, X.F., Gao, T., Yan, F.L.: Coherence concurrence. arXiv:1601.07052 (2016)

  20. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  22. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  23. Yuan, X., Zhou, H.Y., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  24. Du, S.P., Bai, Z.F., Qi, X.F.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)

    MathSciNet  Google Scholar 

  25. Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. (2016). https://doi.org/10.1007/s11128-016-1425-6

    MathSciNet  MATH  Google Scholar 

  26. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  27. Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  28. Bu, K.F., Singh, U., Wu, J.D.: Coherence breaking channels and coherence sudden death. Phys. Rev. A 94, 052335 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  31. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  32. Macchiavello, C., Massimo Palma, G.: Entanglement enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    Article  ADS  Google Scholar 

  33. Yeo, Y., Skeen, A.: Time-correlated quantum amplitudedamping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  34. D’Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310 (2007)

    Article  Google Scholar 

  35. Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-quibit channels with memory. Phys. Rev. A 69, 010303 (2004)

    Article  ADS  Google Scholar 

  36. Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93, 032326 (2016)

    Article  ADS  Google Scholar 

  37. Hu, X.Y.: Coherence non-generating channels. Phys. Rev. A 94, 012326 (2016)

    Article  ADS  Google Scholar 

  38. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Akhtarshenas, S.J., Mohammadi, H., Mousavi, F.S., Nassajpour, V.: Progress on quantum discord of two-qubit states: optimization and upper bound. Int. J. Theor. Phys. 54, 72 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the Start-up Funds for Talent Introduction and Scientific Research of Changsha University 2015 (Grant No. SF1504) and the Scientific Research Project of Hunan Province Department of Education (Grant No.16C0134) and the Natural Science Foundation of Hunan Province (Grant No. 2017JJ3346), Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1403), and the Project of Science and Technology Plan of Changsha (ZD1601071)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-da Li.

Appendix

Appendix

In this appendix, we give the explicit analytic forms of coherence measure for more general family two-qubit states suffering from different kinds of quantum channels with memory to support the statement of fact that increasing the memory can protect the coherence. A general class of two-qubit state can be written in the Hilbert–Schmidt representation as

$$\begin{aligned} \rho =\frac{1}{4}\left( I\otimes I+\sum _{i}^{i=3}a_{i}\sigma _{i}\otimes I+I \otimes \sum _{i}^{i=3}b_{i}\sigma _{i}+\sum _{i,j}^{i,j=3}c_{ij}\sigma _{i}\otimes \sigma _{j}\right) , \end{aligned}$$
(A1)

here I stands for \(2\otimes 2\) the identity operator, \(\sigma _{i}\) are the standard Pauli matrices. For an arbitrary two-qubit state, one can use these parameters \((a_{i}, b_{i}, c_{ij})\) to represent them. However, the general state of two-qubit system described by Eq. (A1), under proper unitary rotations [38, 39], can be parameterized by nine real parameters \(\vec {A}=(a_{1},a_{2},a_{3})\), \(\vec {B}=(b_{1},b_{2},b_{3})\) and \(\vec {C}=(c_{1},c_{2},c_{3})\). Taking into quantum channel with memory affect on coherence account, the \(l_{1}\) norm of coherence for an arbitrary two-qubit state suffering from the amplitude damping channel with memory is obtained

(A2)

where \(\xi _{0}=1-p(1-\mu )\) and \(\mu _{0}=(1-\sqrt{1-p})\mu \). In particular, there exists long-live quantum coherence in the limited \(p\rightarrow 1\), namely time \(t\rightarrow \infty \), and Eq. (A2) reduces to

$$\begin{aligned} C_{l_1}(\varepsilon (\rho ))=\frac{1}{2}\left( \sqrt{a_{1}^2+a_{2}^2} +\sqrt{b_{1}^2+b_{2}^2}+|c_{1}+c_{2}|\right) \mu , \end{aligned}$$
(A3)

which is proportional to parameter \(\mu \). This indicates with the amplitude damping channel with memory \(\mu \) increasing, quantum coherence can be protected effectively. Similarly, we can compute the \(l_{1}\) norm of coherence for an arbitrary two-qubit state suffering from the phase damping channel with memory

(A4)

in the limited \(p\rightarrow 1\), Eq. (A4) reduces to

$$\begin{aligned} C_{l_1}(\varepsilon (\rho ))=\frac{1}{2}\left( |c_{1}-c_{2}|+|c_{1}+c_{2}|\right) \mu \end{aligned}$$
(A5)

which is only dependent of parameters \((c_{1},c_{2})\) and proportional to parameter \(\mu \). Besides, the \(l_{1}\) norm of coherence for an arbitrary two-qubit state subjected to the depolarizing damping channel with memory is also gained

(A6)

Particularly, long-live quantum coherence is presented in the limited \(p\rightarrow 1\), namely

(A7)

which is related to parameter \(\mu \), increasing the memory \(\mu \) can protect the coherence. However, the explicit expression of relative entropy of coherence \(C_{R}\) is too complicated to present in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Yn., Tian, Ql., Zeng, K. et al. Quantum coherence of two-qubit over quantum channels with memory. Quantum Inf Process 16, 310 (2017). https://doi.org/10.1007/s11128-017-1749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1749-x

Keywords

Navigation