Skip to main content
Log in

Scheme for directly measuring the concurrences of Collins–Gisin and Werner classes polarization entangled mixed states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a two-copy-based protocol for directly measuring the concurrence of two-photon polarization entangled mixed states (Collins–Gisin class state and the more complicated bipartite mixed entangled state—Werner class state) without quantum state tomography. The quantum circuit designed for directly measuring concurrence can be realized in an optical system. Our protocol works without the sophisticated controlled-NOT gate, which makes it much simpler than the previous ones. Because all the operations used here are local, the scheme can be used for directly measuring remote mixed entanglement too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Deutsch, D.: Quantum computational networks. Proc. R. Soc. 425, 73 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Symposium on Foundations of Computer Science, IEEE Computer Society (1994)

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature (Lond.) 404, 247 (2000)

    Article  ADS  MATH  Google Scholar 

  7. Schumacher, B., Westmoreland, M.D.: Sending classical information via a noisy quantum channel. Phys. Rev. A 56, 131 (1997)

    Article  ADS  Google Scholar 

  8. Osenda, O., Serra, P.: Scaling of the von neumann entropy in a two-electron system near the ionization threshold. Phys. Rev. A 75, 042331 (2007)

    Article  ADS  Google Scholar 

  9. Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootter, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  12. Wootters, W.K.: Eanglement of formation and concurrence. Quantum Inf. Compt. 1, 27 (2001)

    MATH  Google Scholar 

  13. White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization and utilization. Phys. Rev. Lett. 83, 3103 (1999)

    Article  ADS  Google Scholar 

  14. James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  15. Steffen, M., Ansmann, M., Bialczak, R.C., Katz, N., Lucero, E., McDermott, R., Neeley, M., Weig, E.M., Cleland, A.N., Martinis, J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. Horodecki, P., Ekert, A.: Method for direct detection of quantum entanglement. Phys. Rev. Lett. 89, 127902 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mintert, F., Buchleitner, A.: Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cai, J.M., Song, W.: Novel schemes for directly measuring entanglement of general states. Phys. Rev. Lett. 101, 190503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature (Lond.) 440, 1022 (2006)

    Article  ADS  Google Scholar 

  21. Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement by a projective measurement. Phys. Rev. A 75, 032338 (2007)

    Article  ADS  Google Scholar 

  22. Cheng, L.Y., Yang, G.H., Guo, Q., Wang, H.F., Zhang, S.: Direct measurement of nonlocal entanglement of two-qubit spin quantum states. Sci. Rep. 6, 19482 (2016)

    Article  ADS  Google Scholar 

  23. Romero, G., López, C.E., Lastra, F., Solano, E., Retamal, J.C.: Direct measurement of concurrence for atomic two-qubit pure states. Phys. Rev. A 75, 032303 (2007)

    Article  ADS  Google Scholar 

  24. Yang, R.C., Lin, X., Haung, Z.P., Li, H.C.: Simple scheme for directly measuring concurrence of two-qubit pure states in one step. Commun. Theor. Phys. 51, 252 (2009)

    Article  ADS  MATH  Google Scholar 

  25. Bose, S., Knight, P.L., Plenio, M.B., Vedral, V.: Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158 (1999)

    Article  ADS  Google Scholar 

  26. Zhang, L.H., Yang, M., Cao, Z.L.: Directly measuring the concurrence of atomic two-qubit states through the detection of cavity decay. Eur. Phys. J. D 68, 109 (2014)

    Article  ADS  Google Scholar 

  27. Zhou, L., Sheng, Y.B.: Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A 90, 024301 (2014)

    Article  ADS  Google Scholar 

  28. Zhou, L., Sheng, Y.B.: Concurrence measurement for the two-qubit optical and atomic states. Entropy 17, 4293 (2015)

    Article  ADS  Google Scholar 

  29. Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Bartkiewicz, K., Beran, J., Lemr, K., Norek, M., Miranowicz, A.: Quantifying entanglement of a two-qubit system via measurable and invariant moments of its partially transposed density matrix. Phys. Rev. A 91, 022323 (2015)

    Article  ADS  Google Scholar 

  31. Bartkiewicz, K., Horodecki, P., Lemr, K., Miranowicz, A., Zyczkowski, K.: Method for universal detection of two-photon polarization entanglement. Phys. Rev. A 91, 032315 (2015)

    Article  ADS  Google Scholar 

  32. Zhang, L.H., Yang, M., Cao, Z.L.: Direct measurement of the concurrence for two-photon polarization entangled pure states by parity-check measurements. Phys. Lett. A 377, 1421 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  34. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)

    Article  ADS  Google Scholar 

  35. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  36. Munro, W.J., Nemoto, K., Spiller, T.P., Barrett, S.D., Kok, P., Beausoleil, R.G.: Efficient optical quantum information processing. J. Opt. B 7, S135 (2005)

    Article  ADS  Google Scholar 

  37. Azuma, K., Takeda, H., Koashi, M., Imoto, N.: Quantum repeaters and computation by a single module: remote nondestructive parity measurement. Phys. Rev. A 85, 062309 (2012)

    Article  ADS  Google Scholar 

  38. Zhang, L.H., Yang, Q., Yang, M., Song, W., Cao, Z.L.: Direct measurement of the concurrence of two-photon polarization-entangled states. Phys. Rev. A 88, 062342 (2013)

    Article  ADS  Google Scholar 

  39. Wei, T.C., Altepeter, J.B., Branning, D., Goldbart, P.M., James, D.F.V., Jeffrey, E., Kwiat, P.G., Mukhopadhyay, S., Peter, N.A.: Synthesizing arbitrary two-photon polarization mixed states. Phys. Rev. A 71, 032329 (2005)

    Article  ADS  Google Scholar 

  40. Collins, D., Gisin, N.: A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A 37, 1775 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  42. Hossenfelder, S.: Bimetric theory with exchange symmetry. Phys. Rev. D 78, 044015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  43. Chen, K., Albeverio, S., Fei, S.M.: Concurrence-based entanglement measure for Werner States. Rep. Math. Phys. 58, 325 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Gao, X.H., Sergio, A., Chen, K., Fei, S.M., Li-Jost, X.Q.: Entanglement of formation and concurrence for mixed states. Front. Comput. Sci. China 2, 114 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11274010, 11374085, 61370090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Yang or Zhuo-Liang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, T., Chu, WJ., Yang, Q. et al. Scheme for directly measuring the concurrences of Collins–Gisin and Werner classes polarization entangled mixed states. Quantum Inf Process 16, 262 (2017). https://doi.org/10.1007/s11128-017-1713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1713-9

Keywords

Navigation