Skip to main content
Log in

Performance of quantum cloning and deleting machines over coherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  2. Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bruss, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368–2378 (1998)

    Article  ADS  Google Scholar 

  4. Bruss, D., Cinchetti, M., D’Ariano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62, 012302 (2000)

    Article  ADS  Google Scholar 

  5. Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404, 164–165 (2000)

    ADS  Google Scholar 

  6. Pati, A.K.: Quantum superposition of multiple clones and the novel cloning machine. Phys. Rev. Lett. 83, 2849–2852 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  8. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  9. Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  10. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013)

    Article  ADS  Google Scholar 

  11. Skrzypczyk, P., Short, A.J., Popescu, S.: Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014)

    Article  ADS  Google Scholar 

  12. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  13. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  14. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  15. Korzekwa, K., Lostaglio, M., Oppenheim, J., Jennings, D.: The extraction of work from quantum coherence. New J. Phys. 18, 023045 (2016)

    Article  ADS  Google Scholar 

  16. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  17. Gisin, N., Massar, S.: Optimal quantum cloning machine. Phys. Rev. Lett. 79, 2153–2156 (1997)

    Article  ADS  Google Scholar 

  18. Bruss, D., Ekert, A., Macchiavello, C.: Optimal universal quantum cloning and state estimation. Phys. Rev. Lett. 81, 2598–2601 (1998)

    Article  ADS  Google Scholar 

  19. Bae, J., Acin, A.: Asymptotic quantum cloning is state estimation. Phys. Rev. Lett. 97, 030402 (2006)

    Article  ADS  Google Scholar 

  20. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)

    Article  Google Scholar 

  21. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  22. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  23. Sazim, S., Chakrabarty, I., Datta, A., Pati, A.K.: Complementarity of quantum correlations in cloning and deleting of quantum states. Phys. Rev. A 91, 062311 (2015)

    Article  ADS  Google Scholar 

  24. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  25. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author S. Karmakar acknowledges the financial support from UGC, India. The author A.Sen acknowledges NBHM, DAE, India, and the author D. Sarkar acknowledges SERB, DST, India, and DSA-SAP for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sarkar.

Appendix A: Explicit expressions

Appendix A: Explicit expressions

Explicit expression of the coefficients of the cloned state \(\rho _{ab}^{\mathrm{clone}}\) given in Eq. (8):

$$\begin{aligned} p_{00,00}= & {} \alpha ^2\hat{a}^2+\beta ^2\tilde{c}^2+\alpha \beta (\hat{a} \tilde{c}^*\langle \tilde{C}|A\rangle +\hat{a}^*\tilde{c}\langle A|\tilde{C}\rangle ) =\langle u_1|u_1\rangle \nonumber \\ p_{01,01}= & {} \alpha ^2b_1^2+\beta ^2\tilde{b_2}^2+\alpha \beta (b_1\tilde{b_2}^* \langle \tilde{B_2}|B_1\rangle +b_1^*\tilde{b_2}\langle B_1|\tilde{B_2}\rangle ) =\langle v_1|v_1\rangle \nonumber \\ p_{10,10}= & {} \alpha ^2b_2^2+\beta ^2\tilde{b_1}^2+\alpha \beta (b_2\tilde{b_1}^* \langle \tilde{B_1}|B_2\rangle +b_2^*\tilde{b_1}\langle B_2|\tilde{B_1}\rangle ) =\langle v_2|v_2\rangle \nonumber \\ p_{11,11}= & {} \alpha ^2c^2+\beta ^2\tilde{\hat{a}}^2+\alpha \beta (c\tilde{\hat{a}}^* \langle \tilde{A}|C\rangle +c^*\tilde{\hat{a}}\langle C|\tilde{A}\rangle ) =\langle u_2|u_2\rangle \nonumber \\ p_{00,01}= & {} p^*_{01,00}=\alpha ^2\hat{a}b_1^*\langle B_1|A\rangle +\beta ^2 \tilde{b_2}^*\tilde{c}\langle \tilde{B_2}|\tilde{C}\rangle +\alpha \beta (\hat{a}\tilde{b_2}^*\langle \tilde{B_2}|A\rangle +b_1^*\tilde{c}\langle B_1 |\tilde{C}\rangle )\nonumber \\= & {} \langle v_1|u_1\rangle \nonumber \\ p_{00,10}= & {} p^*_{10,00}=\alpha ^2\hat{a}b_2^*\langle B_2|A\rangle +\beta ^2 \tilde{b_1}^*\tilde{c}\langle \tilde{B_1}|\tilde{C}\rangle +\alpha \beta (\hat{a}\tilde{b_1}^*\langle \tilde{B_1}|A\rangle +b_2^*\tilde{c}\langle B_2|\tilde{C}\rangle )\nonumber \\= & {} \langle v_2|u_1\rangle \\ p_{00,11}= & {} p^*_{11,00}=\alpha ^2\hat{a}c^*\langle C|A\rangle +\beta ^2\tilde{\hat{a}}^*\tilde{c}\langle \tilde{A}|\tilde{C}\rangle +\alpha \beta (\hat{a}\tilde{\hat{a}}^*\langle \tilde{A}|A\rangle +c^*\tilde{c}\langle C|\tilde{C} \rangle )\nonumber \\= & {} \langle u_2|u_1\rangle \nonumber \\ p_{01,10}= & {} p^*_{10,01}=\alpha ^2b_1b_2^*\langle B_2|B_1\rangle +\beta ^2 \tilde{b_1}^*\tilde{b_2}\langle \tilde{B_1}|\tilde{B_2}\rangle +\alpha \beta (b_1\tilde{b_1}^*\langle \tilde{B_1}|B_1\rangle \nonumber \\&\quad +\,b_2^*\tilde{b_2}\langle B_2|\tilde{B_2} \rangle )=\langle v_2|v_1\rangle \nonumber \\ p_{01,11}= & {} p^*_{11,01}=\alpha ^2b_1c^*\langle C|B_1\rangle +\beta ^2\tilde{\hat{a}}^*\tilde{b_2}\langle \tilde{A}|\tilde{B_2}\rangle +\alpha \beta (b_1 \tilde{\hat{a}}^*\langle \tilde{A}|B_1\rangle \nonumber \\&\quad +\,c^*\tilde{b_2}\langle C|\tilde{B_2} \rangle )=\langle u_2|v_1\rangle \nonumber \\ p_{10,11}= & {} p^*_{11,10}=\alpha ^2b_2c^*\langle C|B_2\rangle +\beta ^2\tilde{\hat{a}}^*\tilde{b_1}\langle \tilde{A}|\tilde{B_1}\rangle +\alpha \beta (b_2 \tilde{\hat{a}}^*\langle \tilde{A}|B_2\rangle \nonumber \\&\quad +\,c^*\tilde{b_1}\langle C|\tilde{B_1} \rangle )=\langle u_2|v_2\rangle \nonumber \end{aligned}$$
(A1)

where \(|u_1\rangle =\alpha \hat{a}|A\rangle +\beta \tilde{c}|\tilde{C}\rangle \), \(|u_2\rangle =\alpha c|C\rangle +\beta \tilde{\hat{a}}|\tilde{A}\rangle \), \(|v_1\rangle =\alpha b_1|B_1\rangle +\beta \tilde{b_2}|\tilde{B_2}\rangle \), \(|v_2\rangle =\alpha b_2|B_2\rangle +\beta \tilde{b_1}|\tilde{B_1}\rangle \)

Explicit expression of the coefficients of the state \(\rho _{ab}^{c\rightarrow d}\) given in Eq. (14):

$$\begin{aligned} \begin{aligned} r_{00,00}&=\alpha ^2\hat{a}^2+\beta ^2\tilde{c}^2+\alpha \beta (\hat{a}\tilde{c}^*\langle A_1|A_0\rangle +\hat{a}^*\tilde{c}\langle A_0|A_1\rangle )\\ r_{01,01}&=\alpha ^2b_1^2+\beta ^2\tilde{b_2}^2+\alpha \beta (b_1 \tilde{b_2}^*\langle \tilde{B_2}|B_1\rangle +b_1^*\tilde{b_2}\langle B_1 |\tilde{B_2}\rangle )\\ r_{10,10}&=\alpha ^2(b_2^2+c^2+b_2c^*\langle A_3|B_2\rangle +b_2^*c\langle B_2|A_3\rangle )+\beta ^2(\tilde{\hat{a}}^2+\tilde{b_1}^2\\&\quad +\,\tilde{\hat{a}}^*\tilde{b_1}\langle A_2|\tilde{B_1}\rangle +\tilde{\hat{a}} \tilde{b_1}^*\langle \tilde{B_1}|A_2\rangle )\\&\quad +\,\alpha \beta (b_2\tilde{\hat{a}}^*\langle A_2|B_2\rangle +b_2^*\tilde{\hat{a}} \langle B_2|A_2\rangle +b_2\tilde{b_1}^*\langle \tilde{B_1}|B_2\rangle +b_2^*\tilde{b_1}\langle B_2|\tilde{B_1}\rangle \\&\quad +\,c^*\tilde{\hat{a}}\langle A_3|A_2\rangle +c\tilde{\hat{a}}^*\langle A_2|A_3\rangle +c^*\tilde{b_1} \langle A_3|\tilde{B_1}\rangle +c\tilde{b_1}^*\langle \tilde{B_1}|A_3\rangle )\\ r_{00,01}&=r^*_{01,00}=\alpha ^2\hat{a}b_1^*\langle B_1|A_0\rangle +\beta ^2 \tilde{b_2}^*\tilde{c}\langle \tilde{B_2}|A_1\rangle +\alpha \beta (\hat{a} \tilde{b_2}^*\langle \tilde{B_2}|A_0\rangle \\&\quad +\,b_1^*\tilde{c}\langle B_1|A_1\rangle )\\ r_{00,10}&=r^*_{10,00}=\alpha ^2(\hat{a}b_2^*\langle B_2|A_0\rangle +\hat{a} c^*\langle A_3|A_0\rangle )+\beta ^2(\tilde{b_1}^*\tilde{c}\langle \tilde{B_1} |A_1\rangle +\tilde{\hat{a}}^*\tilde{c}\langle \tilde{A_2}|A_1\rangle )\\&\quad +\,\alpha \beta (\hat{a}\tilde{\hat{a}}^*\langle A_1|A_0\rangle +\hat{a} \tilde{b_1}^*\langle \tilde{B_1}|A_0\rangle +\hat{a}^*\tilde{c}\langle A_0|A_1 \rangle +b_2^*\tilde{c}\langle B_2|A_1\rangle )\\ r_{01,10}&=r^*_{10,01}=\alpha ^2(b_1b_2^*\langle B_2|B_1\rangle +b_1c^* \langle A_3|B_2\rangle )+\beta ^2(\tilde{b_1}^*\tilde{b_2}\langle \tilde{B_1} |\tilde{B_2}\rangle \\&\quad +\,\tilde{\hat{a}}^*\tilde{b_2}\langle A_2|\tilde{B_2}\rangle )\\&\quad +\,\alpha \beta (b_1\tilde{\hat{a}}^*\langle A_2|B_1\rangle +b_1\tilde{b_1}^* \langle \tilde{B_1}|B_1\rangle +b_2^*\tilde{b_2}\langle B_2|\tilde{B_2}\rangle +c^*\tilde{b_2}\langle A_3|\tilde{B_2}\rangle )\\ \end{aligned} \end{aligned}$$
(A2)

Explicit expression of the coefficients of the state \(\rho _{aa'}^{d\rightarrow c}\) given in Eq. (23):

$$\begin{aligned}&m_{00,00}=\alpha ^2\hat{a}^2+\beta ^2\tilde{c}^2\nonumber \\&m_{01,01}=\alpha ^2b_1^2+\beta ^2\tilde{b_2}^2\nonumber \\&m_{10,10}=\alpha ^2b_2^2+\beta ^2\tilde{b_1}^2\nonumber \\&m_{11,11}=\alpha ^2c^2+\beta ^2\tilde{\hat{a}}^2\nonumber \\&m_{00,01}=m^*_{01,00}=\alpha ^2\hat{a}b_1^*\langle B_1|A\rangle +\beta ^2\tilde{b_2}^*\tilde{c}\langle \tilde{B_2}|\tilde{C}\rangle \nonumber \\&m_{00,10}=m^*_{10,00}=\alpha ^2\hat{a}b_2^*\langle B_2|A\rangle +\beta ^2\tilde{b_1}^*\tilde{c}\langle \tilde{B_1}|\tilde{C}\rangle \nonumber \\&m_{00,11}=m^*_{11,00}=\alpha ^2\hat{a}c^*\langle C|A\rangle +\beta ^2\tilde{\hat{a}}^*\tilde{c}\langle \tilde{A}|\tilde{C}\rangle \nonumber \\&m_{01,10}=m^*_{10,01}=\alpha ^2b_1b_2^*\langle B_2|B_1\rangle +\beta ^2 \tilde{b_1}^*\tilde{b_2}\langle \tilde{B_1}|\tilde{B_2}\rangle \nonumber \\&m_{01,11}=m^*_{11,01}=\alpha ^2b_1c^*\langle C|B_1\rangle +\beta ^2 \tilde{\hat{a}}^*\tilde{b_2}\langle \tilde{A}|\tilde{B_2}\rangle \nonumber \\&m_{10,11}=m^*_{11,10}=\alpha ^2b_2c^*\langle C|B_2\rangle +\beta ^2 \tilde{\hat{a}}^*\tilde{b_1}\langle \tilde{A}|\tilde{B_1}\rangle \end{aligned}$$
(A3)

Explicit expression of the coefficients of the state \(\rho _{bb'}^{d\rightarrow c}\) given in Eq. (23) are same as \(m_i\)’s, just replacing \(\alpha ^2\) by \(1-\alpha ^2\beta ^2\) and \(\beta ^2\) by \(\alpha ^2\beta ^2\) in Eq. (A3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., Sen, A. & Sarkar, D. Performance of quantum cloning and deleting machines over coherence. Quantum Inf Process 16, 251 (2017). https://doi.org/10.1007/s11128-017-1691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1691-y

Keywords

Navigation