Skip to main content
Log in

Dynamic Grover search: applications in recommendation systems and optimization problems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the recent years, we have seen that Grover search algorithm (Proceedings, 28th annual ACM symposium on the theory of computing, pp. 212–219, 1996) by using quantum parallelism has revolutionized the field of solving huge class of NP problems in comparisons to classical systems. In this work, we explore the idea of extending Grover search algorithm to approximate algorithms. Here we try to analyze the applicability of Grover search to process an unstructured database with a dynamic selection function in contrast to the static selection function used in the original work (Grover in Proceedings, 28th annual ACM symposium on the theory of computing, pp. 212–219, 1996). We show that this alteration facilitates us to extend the application of Grover search to the field of randomized search algorithms. Further, we use the dynamic Grover search algorithm to define the goals for a recommendation system based on which we propose a recommendation algorithm which uses binomial similarity distribution space giving us a quadratic speedup over traditional classical unstructured recommendation systems. Finally, we see how dynamic Grover search can be used to tackle a wide range of optimization problems where we improve complexity over existing optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997). arXiv:quant-ph/9508027

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212–219 (1996)

  3. Deutsch, D., Zozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Feynman, R.P.: Simulating physics with computers. Keynote speech, Department of Physics, California Institute of Technology, Pasedena. http://www.cs.berkeley.edu/~christos/classics/Feynman.pdf

  5. Grover, L.K.: A framework for fast quantum mechanical algorithms. arXiv:quant-ph/9711043v2

  6. Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014v2

  7. Tucci, R.R.: quantum circuit for calculating mean values via Grover-like algorithm. arXiv:quant-ph/1404.0668

  8. Grover, L.K.: A fast quantum mechanical algorithm for estimating the median. Bell Lab Technical Memorandum No. ITD-96-30115J. arXiv:quant-ph/9607024v1

  9. Lee, S.K., Cho, Y.H., Kim, S.H.: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Inf. Sci. 180(11), 2142–2155 (2010)

    Article  Google Scholar 

  10. Nez-Valdz, E.R., Cueva-Lovelle, J.M., Sanju-Martnez, O., Garca-Daz, V., Ordoz, P., Montenegro-Marn, C.E.: Implicit feedback techniques on recommender systems applied to electronic books. Comput. Hum. Behav. 28(4), 1186–1193 (2012)

    Article  Google Scholar 

  11. Choi, K., Yoo, D., Kim, G., Suh, Y.: A hybrid online-product recommendation system: combining implicit rating-based collaborative filtering and sequential pattern analysis. Electron. Commer. Res. Appli. doi:10.1016/j.elerap.2012.02.004 (in press)

  12. Park, D.H., Kim, H.K., Choi, I.Y., Kim, J.K.: A literature review and classification of recommender systems research. Expert Syst. Appl. 39, 10059–10072 (2012)

    Article  Google Scholar 

  13. Carrer-Neto, W., Hernndez-Alcaraz, M.L., Valencia-Garca, R., Garca-Snchez, F.: Social knowledge-based recommender system. Application to the movies domain. Expert Syst. Appl. 39(12), 10990–11000 (2012)

    Article  Google Scholar 

  14. Winoto, P., Tang, T.Y.: The role of user mood in movie recommendations. Expert Syst. Appl. 37(8), 6086–6092 (2010)

    Article  Google Scholar 

  15. Serrano-Guerrero, J., Herrera-Viedma, E., Olivas, J.A., Cerezo, A., Romero, F.P.: A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0. Inf. Sci. 181(9), 1503–1516 (2011)

    Article  Google Scholar 

  16. Zaiane, O.: Building a recommender agent for e-learning systems. In: Proceedings of the International Conference on Computers Education (ICCE02), vol. 1, pp. 55–59 (2002)

  17. Huang, Z., Zeng, D., Chen, H.: A comparison of collaborative filtering recommendation algorithms for e-commerce. IEEE Intell. Syst. 22(5), 68–78 (2007)

    Article  Google Scholar 

  18. Castro-Sanchez, J.J., Miguel, R., Vallejo, D., Lpez-Lpez, L.M.: A highly adaptive recommender system based on fuzzy logic for B2C e-commerce portals. Expert Syst. Appl. 38(3), 2441–2454 (2011)

    Article  Google Scholar 

  19. Costa-Montenegro, E., Barragns-Martnez, A.B., Rey-Lpez, M.: Which App? A recommender system of applications in markets: implementation of the service for monitoring users interaction. Expert Syst. Appl. 39(10), 9367–9375 (2012)

    Article  Google Scholar 

  20. Mcnally, K., Omahony, M.P., Coyle, M., Briggs, P., Smyth, B.: A case study of collaboration and reputation in social web search. ACM Trans. Intell. Syst. Technol. 3(1), 4 (2011)

    Article  Google Scholar 

  21. Hromkovic, J.: Algorithmics for Hard Problems, Texts in Theoretical Computer Science (2nd ed.). Springer, ISBN 978-3-540-44134-2 (2002)

  22. Kann, V.: On the Approximability of NP-Complete Optimization Problems. Royal Institute of Technology, Stockholm (1992)

    Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. ISBN 978-1-107-00217-3 (Chapter 2, 6)

  24. Zhao, L.J., Li, Y.S., Hao, L., et al.: Geometric pictures for quantum search algorithms. Quantum Inf. Process. 11(2), 325–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  Google Scholar 

  26. Toyama, F.M., van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quantum Inf. Process. 12(5), 1897–1914 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Long, G.L., Li, Y.S., Zhang, W.L., et al.: Phase matching in quantum searching. Phys. Lett. A 262(1), 27–34 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Biham, E., Biham, O., Biron, D., et al.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A 63(1), 012310 (2000)

    Article  ADS  Google Scholar 

  29. Xin, LI., Kaoping, SONG., Ning, SUN., Chunli, ZHAO.: Phase Matching in Grover’s Algorithm, IEEE Control Conference (CCC), 2013 32nd Chinese

  30. Grover, L.K.: Fixed-Point quantum search. Phys. Rev. Lett. 95, 150501 (2005)

    Article  ADS  MATH  Google Scholar 

  31. Yoder, T.J., Low, G.H., Chuang, I.L.: Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett. 113(21), 210501 (2014)

    Article  ADS  Google Scholar 

  32. Shantanav, C., Subhashish, B., Satyabrata, A., Atul, K.: Entanglement in the Grover’s search algorithm. arXiv:1305.4454 [quant-ph]

  33. Braunstein, S.L., Pati, A.K.: Speed-up and entanglement in quantum searching. J. Quantum Inf. Comput. Arch. 2(5), 399–409 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Porcel, C., Herrera-Viedma, E.: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries. Knowl. Based Syst. 23(1), 32–39 (2010)

    Article  Google Scholar 

  35. Porcel, C., Moreno, J.M., Herrera-Viedma, E.: A multi-disciplinar recommender system to advice research resources in university digital libraries. Expert Syst. Appl. 36(10), 12520–12528 (2009)

    Article  Google Scholar 

  36. Porcel, C., Tejeda-Lorente, A., Martnez, M.A., Herrera-Viedma, E.: A hybrid recommender system for the selective dissemination of research resources in a technology transfer office. Inf. Sci. 184(1), 1–19 (2012)

    Article  MATH  Google Scholar 

  37. Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Knowl. Based Syst. 22, 261–265 (2009)

    Article  Google Scholar 

  38. Ramos, R.V., de Sousa, P.B., Oliveira, D.Sena.: Solving mathematical problems with quantum search algorithm. arXiv:quant-ph/0605003, pp. 2, 5

  39. Stipcevic, M., Rogina, B.M.: Quantum random number generator. Rev. Sci. Instrum. 78(045104), 1–7 (2007)

    Google Scholar 

  40. Zalka, C.: Grovers quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanshdeep Singh.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

Lemma 1

In order for the Grover’s search to have a meaningful next step following conditions must be satisfied.

  1. 1.

    The Mean (\(\mu \)) (calculate in the inversion step) should be positive.

  2. 2.

    The coefficients of the unselected states should remain positive.

  3. 3.

    The number of selected states \(N_\mathrm{s}\) for Gain G(\(=\frac{P_\mathrm{s}}{P_\mathrm{us}})\) should be

    $$\begin{aligned} N_\mathrm{s} < \frac{N}{2G} \;\;\;\; {\hbox {where}} \;\; G \gg 1 \end{aligned}$$

Proof

Let N, \(N_\mathrm{s}\) and \(N_\mathrm{us}\) represent total number of states, number of selected states, and number of unselected states respectively.

Hence

$$\begin{aligned} N_\mathrm{us} = N - N_\mathrm{s} \end{aligned}$$
(29)

Let \(\mu \), \(a_\mathrm{s}\) and \(a_\mathrm{us}\) represent the mean, the coefficient of selected states, and coefficient of unselected states respectively. So,

$$\begin{aligned} \mu = \frac{N_\mathrm{us} a_\mathrm{us} - N_\mathrm{s} a_\mathrm{s}}{N} \end{aligned}$$
(30)

For coefficient of unselected states to be positive (say in the last step)

$$\begin{aligned}&a_\mathrm{us1} = 2\mu - a_\mathrm{us} > 0 \end{aligned}$$
(31)
$$\begin{aligned}&\implies 2\frac{N_\mathrm{us} a_\mathrm{us} - N_\mathrm{s} a_\mathrm{s}}{N} - a_\mathrm{us} > 0 \end{aligned}$$
(32)
$$\begin{aligned}&\implies \frac{a_\mathrm{s}}{a_\mathrm{us}} < \left( \frac{N}{2 N_\mathrm{s}} - 1\right) \end{aligned}$$
(33)

Now \(G = \frac{P_\mathrm{s}}{P_\mathrm{us}}\),

$$\begin{aligned} \implies G = \frac{N_\mathrm{s} a_\mathrm{s}^2}{(N - N_\mathrm{s}) a_\mathrm{us}^2} \end{aligned}$$
(34)

since \(a_\mathrm{s}\) and \(a_\mathrm{us}\) is positive,

$$\begin{aligned} \implies G < \frac{N_\mathrm{s}}{N - N_\mathrm{s}} \left( \frac{N}{2 N_\mathrm{s}} - 1\right) ^2 \end{aligned}$$
(35)

for \(G \gg 1 \),

$$\begin{aligned} N_\mathrm{s} < \frac{N}{2 G} \end{aligned}$$
(36)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarty, I., Khan, S. & Singh, V. Dynamic Grover search: applications in recommendation systems and optimization problems. Quantum Inf Process 16, 153 (2017). https://doi.org/10.1007/s11128-017-1600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1600-4

Keywords

Navigation