Skip to main content
Log in

Protection of quantum Fisher information in entangled states via classical driving

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement can offer a quadratic enhancement in the precision of parameter estimation. We here study the protection of quantum Fisher information (QFI) of the phase parameter in entangled-atom states within the framework of independently dissipative environments and driven individually by classical fields. It is shown that the QFI of the phase parameter can be protected effectively only when the classical fields that drive all atoms are suitably strong, and if one of them vanishes or is very weak, then the ability of protection loses, no matter how strong the other driving fields are. We also study the evolution of fidelity of the entangled state itself and find that though the protections of QFI and quantum states are two different notions, the method can also be used to protect quantum states effectively when the driving fields are suitably strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  2. Maccone, L., Giovannetti, V.: Quantum metrology: beauty and the noisy beast. Nat. Phys. 7, 376–377 (2011)

    Article  Google Scholar 

  3. Kahn, J., Gutǎ, M.: Local asymptotic normality for finite dimensional quantum systems. Commun. Math. Phys. 289, 597–652 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Giovannetti, V., Lloyd, S., Maccone, L.: Quanyum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  5. Zwierz, M., Prez-Delgado, C.A., Koke, P.: General optimality of the heisenberg limit for quanyum metrology. Phys. Rev. Lett. 105(1–4), 180402 (2010)

    Article  ADS  Google Scholar 

  6. Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolvung phase measurements with a multi-photon entangled state. Nature 429, 161–164 (2004)

    Article  ADS  Google Scholar 

  7. Eisenberg, H.S., Hodelin, J.F., Khoury, G., Bouwmeester, D.: Multiphoton path entanglement by nonlocal bunching. Phys. Rev. Lett. 94(1–4), 090502 (2005)

    Article  ADS  Google Scholar 

  8. Nagata, T., Okamoto, R., O’Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four entangled photons. Science 316, 726–729 (2007)

    Article  ADS  Google Scholar 

  9. Goda, K., Miyakawa, O., Mikhailov, E.E., Saraf, S., Adhikari, R., McKenzie, K., Ward, R., Vass, S., Weinstein, A.J., Mavalvala, N.: A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472–476 (2008)

    Article  Google Scholar 

  10. LIGO Scientific Collaboration: A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)

    Article  Google Scholar 

  11. Wineland, D.J., Bollinger, J.J., Itano, W.M., Moore, F.L., Heinzen, D.J.: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992)

    Article  ADS  Google Scholar 

  12. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997)

    Article  ADS  Google Scholar 

  13. Meyer, V., Rowe, M.A., Kielpinski, D., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001)

    Article  ADS  Google Scholar 

  14. Leibfried, D., Barrett, M.A., Schaetz, T., Britton, J., Chiaverini, J., Itano, W.M., Jost, J.D., Langer, C., Wineland, D.J.: Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  Google Scholar 

  15. Wasilewski, W., Jensen, K., Krauter, H., Renema, J.J., Balabas, M.V., Polzik, E.S.: Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104(1–4), 133601 (2010)

    Article  ADS  Google Scholar 

  16. Demkowicz-Dobrzański, R., Kołodyński, J., Gutǎ, M.: The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3(1–8), 1063 (2012)

    Article  Google Scholar 

  17. Knysh, S., Smelyanskiy, V.N., Durkin, G.A.: Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83(1–4), 021804 (2011)

    Article  ADS  Google Scholar 

  18. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)

    Article  Google Scholar 

  19. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109(1–5), 233601 (2012)

    Article  ADS  Google Scholar 

  20. Demkowicz-Dobrzański, R., Jarzyna, M., Kołodyński, J.: Quantum limits in optical interferometry. Prog. Opt. 60, 345–435 (2015)

    Article  Google Scholar 

  21. Yao, Y., Ge, L., Xiao, X., Wang, X., Sun, C.P.: Multiple phase estimation for arbitrary pure states under white noise. Phys. Rev. A 90(1–6), 062113 (2014)

    Article  ADS  Google Scholar 

  22. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-sate system. Phys. Rev. A 91(1–7), 052105 (2015)

    Article  ADS  Google Scholar 

  23. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87(1–14), 022337 (2013)

    Article  ADS  Google Scholar 

  25. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(1–5), 140401 (2014)

    Article  ADS  Google Scholar 

  26. Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93(1–12), 052331 (2016)

    Article  ADS  Google Scholar 

  27. Zeng, H.S., Zheng, Y.P., Tang, N., Wang, G.Y.: Correlation quantum beats induced by non-Markovian effect. Quantum Inf. Process 12, 1637–1650 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zhang, J.S., Xu, J.B., Lin, Q.: Controlling entanglement sudden death in cavity QED by classical driving fields. Eur. Phys. J. D 51, 283–288 (2009)

    Article  ADS  Google Scholar 

  29. Wang, D.M., Xu, J.B., Yu, Y.H.: Control of the frozen geometric quantum correlation by applying the time-dependent electromagnetic field. Phys. A 447, 62–70 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11275064), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20124306110003), and the Construct Program of the National Key Discipline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Sheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, YK., Tang, LM. & Zeng, HS. Protection of quantum Fisher information in entangled states via classical driving. Quantum Inf Process 15, 5011–5021 (2016). https://doi.org/10.1007/s11128-016-1444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1444-3

Keywords

Navigation