Skip to main content
Log in

Secure quantum communication using classical correlated channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice’s measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C. H., Brassard, G.: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, p. 8. New York (1984)

  2. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67 661–663 (1991)

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 7 1895–1899 (1993)

  5. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299 802–803 (1982)

  6. de Almeida, N.G., Maia, L.P., Villas-Boas, C.J., Moussa, M.H.Y.: One-cavity scheme for atomic-state teleportation through GHZ states. Phys. Lett. A 241, 213–217 (1998)

    Article  ADS  Google Scholar 

  7. Villas-Bôas, C.J., de Almeida, N.G., Moussa, M.H.Y.: Teleportation of a zero- and one-photon running-wave state by projection synthesis. Phy. Rev. A 60, 2759 (1999)

    Article  ADS  Google Scholar 

  8. Cardoso, W.C., de Almeida, N.G.: Partial teleportation of entangled atomic states. Phys. Lett. A 373, 201 (2009)

    Article  ADS  MATH  Google Scholar 

  9. Sales, J., da Silva, L., de Almeida, N.G.: Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity. Phys. Rev. A 83, 034302 (2011)

    Article  ADS  Google Scholar 

  10. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  12. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, J.H., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  13. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  14. Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)

    Article  ADS  MATH  Google Scholar 

  15. Chen, Y.A., Chen, S., Yuan, Z.S., Zhao, B., Chuu, C.S., Schmiedmayer, J., Pan, J.W.: Memory-built-in quantum teleportation with photonics and atomic qubits. Nat. Phys. 4, 103 (2008)

    Article  Google Scholar 

  16. Killoran, N., Biggeerstaff, D.N., Kaltenbaek, R., Resch, K.J., Lütkenhaus, N.: Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states. Phys. Rev. A 81, 012334 (2010)

    Article  ADS  Google Scholar 

  17. Yang, J., Bao, X., Zhang, H., Chen, S., Peng, C., Chen, Z., Pan, J.: Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources. Phys. Rev. A 80, 042321 (2009)

    Article  ADS  Google Scholar 

  18. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)

    Article  ADS  Google Scholar 

  19. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269 (2012)

    Article  ADS  Google Scholar 

  21. Zhou, N., Wang, L., Gong, L., Zuo, X., Liu, Y.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping. Opt. Commun. 284, 4836 (2011)

    Article  ADS  Google Scholar 

  22. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Grants #2012/02816-5, #2012/00176-9 and #2013/04162-5, São Paulo Research Foundation (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Instituto Nacional de Ciência e Tecnologia Informação Quântica (INCT-IQ) for the financial support. NGA thanks FAPEG for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. de Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, D., de Almeida, N.G. & Villas-Boas, C.J. Secure quantum communication using classical correlated channel. Quantum Inf Process 15, 4303–4311 (2016). https://doi.org/10.1007/s11128-016-1389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1389-6

Keywords

Navigation