Skip to main content
Log in

Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study, in the paradigm of open quantum systems, the dynamics of quantum coherence of a static polarizable two-level atom which is coupled with a thermal bath of fluctuating electromagnetic field in the absence and presence of boundaries. The purpose was to find the conditions under which the decoherence can be inhibited effectively. We find that without boundaries, quantum coherence of the two-level atom inevitably decreases due to the effect of thermal bath. However, the quantum decoherence, in the presence of a boundary, could be effectively inhibited when the atom is transversely polarizable and near this boundary. In particular, we find that in the case of two parallel reflecting boundaries, the atom with a parallel dipole polarization at arbitrary location between these two boundaries will be never subjected to decoherence provided we take some special distances for the two boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leggett, A.J.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(7), 277–279 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  5. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013)

    Article  ADS  Google Scholar 

  6. Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A. 90(6), 062110 (2014)

    Article  ADS  Google Scholar 

  7. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79(2), 555–609 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Lostagio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5(2), 021001 (2015)

    Google Scholar 

  9. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  10. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  11. Dobrzanski, R.D., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113(25), 250801 (2014)

    Article  ADS  Google Scholar 

  12. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113(15), 150402 (2014)

    Article  Google Scholar 

  13. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  14. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113(17), 170401 (2014)

    Article  ADS  Google Scholar 

  15. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Prress, Oxford (2002)

    MATH  Google Scholar 

  16. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005)

    Article  ADS  Google Scholar 

  17. Wang, J.C., Jing, J.L.: Quantum decoherence in noninertial frames. Phys. Rev. A 82(3), 032324 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Tian, Z.H., Jing, J.L.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707(2), 264–271 (2012)

    Article  ADS  Google Scholar 

  19. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102–112 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. arXiv: 1601.03238

  21. Tian, Z.H., Wang, J.C., Fan, H., Jing, J.L.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 7946 (2015)

    Article  ADS  Google Scholar 

  22. Tian, Z.H., Jing, J.L.: Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime. Ann. Phys. 350, 1–13 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37–47 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114(21), 210401 (2015)

    Article  ADS  Google Scholar 

  25. Cianciaruso, M., Bromley, T.R., Roga, W., Franco, R.L., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  26. Silva, A., et al.: Observation of time-invariant coherence in a room temperature quantum simulator. arxiv: 1511.01971

  27. Man, Z.X., Xia, Y.J., Franco, R.L.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  28. Franco, R.L.: Switching quantum memory on and off. New J. Phys. 17, 072001 (2015)

    Article  Google Scholar 

  29. Man, Z.X., Xia, Y.J., Franco, R.L.: Harnessing non-Markovian quantum memory by environmental coupling. Phys. Rev. A 92(1), 012315 (2015)

    Article  ADS  Google Scholar 

  30. Brito, F., Werlang, T.: A knob for Markovianity. New J. Phys. 17, 081004 (2015)

    Article  Google Scholar 

  31. Rodriguez, F.J., Quiroga, L., Tejedor, C., Martin, M.D., Vina, L., Andre, R.: Control of non-Markovian effects in the dynamics of polaritons in semiconductor microcavities. Phys. Rev. B 78(3), 035312 (2008)

    Article  ADS  Google Scholar 

  32. Tudela, A.G., Rodriguez, F.J., Quiroga, L., Tejedor, C.: Dissipative dynamics of a solid-state qubit coupled to surface plasmons: from non-Markov to Markov regimes. Phys. Rev. B 82(11), 115334 (2010)

    Article  ADS  Google Scholar 

  33. Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14(4), 1305–1320 (2015)

    Article  ADS  MATH  Google Scholar 

  34. Yang, Z.G., Wu, T.T., Liu, J.M.: Remote state preparation via photonic Faraday rotation in low-Q cavities. Acta Phys. Sin. 65(2), 020302 (2016)

    MathSciNet  Google Scholar 

  35. Xiao, X.Q., Xiao, J.F., Ren, Y., Li, Y., Ji, C.L., Huang, X.G.: Remote state preparation of a two-atom entangled state in cavity QED. Int. J. Theor. Phys. 55(6), 2764–2772 (2016)

    Article  MATH  Google Scholar 

  36. Compagno, G., Passante, R., Persico, F.: Atom-Field Interactions and Dressed Atoms. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  37. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Benatti, F., Floreanini, R., Piani, M.: Environment induced entanglement in markovian dissipative dynamics. Phys. Rev. Lett. 91(7), 070402 (2003)

    Article  ADS  Google Scholar 

  40. Brown, L.S., Maclay, G.J.: Vacuum stress between conducting plates: an image solution. Phys. Rev. 184(5), 1272–1279 (1969)

    Article  ADS  Google Scholar 

  41. Yu, H.W., Chen, J., Wu, P.X.: Brownian motion of a charged test particle near a reflecting boundary at finite temperature. J. High Energy Phys. 02, 058 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  42. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  43. Meschede, D., Jhe, W., Hinds, E.A.: Radiative properties of atoms near a conducting plane: an old problem in a new light. Phys. Rev. A 41(3), 1587–1596 (1990)

    Article  ADS  Google Scholar 

  44. Martini, F.D., Marrocco, M., Mataloni, P., Crescentini, L., Loudon, R.: Spontaneous emission in the optical microscopic cavity. Phys. Rev. A 43(5), 2480–2497 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11475061 and 11305058; the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No. Y5KF161CJ1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tian, Z., Wang, J. et al. Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf Process 15, 3677–3694 (2016). https://doi.org/10.1007/s11128-016-1343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1343-7

Keywords

Navigation