Skip to main content
Log in

Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding \(\pi \)-tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the \(\pi \)-tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The current status of quantum computer technology was reviewed in Ref. [8].

  2. In this paper we will call \(\tau _3 = \sqrt{\tau _{ABC}}\) three-tangle and \(\tau _3^2 = \tau _{ABC}\) residual entanglement.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). arXiv:quant-ph/0702225 and references therein

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channles. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Scarani, V., Lblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005). arXiv:quant-ph/0511088 and references therein

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kollmitzer, C., Pivk, M.: Applied Quantum Cryptography. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  8. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010). arXiv:1009.2267 [quant-ph]

    Article  ADS  Google Scholar 

  9. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003). arXiv:quant-ph/0301063

    Article  ADS  Google Scholar 

  10. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  11. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). arXiv:quant-ph/0105127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Yu, T., Eberly, J.H.: Phonon decoherence of quantum entanglement: Robust and fragile states. Phys. Rev. B 66, 193306 (2002). arXiv:quant-ph/0209037

    Article  ADS  Google Scholar 

  13. Simon, C., Kempe, J.: Robustness of multiparty entanglement. Phys. Rev. A 65, 052327 (2002). arXiv:quant-ph/0109102

    Article  ADS  Google Scholar 

  14. Dür, W., Briegel, H.J.: Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004). arXiv:quant-ph/0307180

    Article  Google Scholar 

  15. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004). arXiv:quant-ph/0404161

    Article  ADS  Google Scholar 

  16. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006). arXiv:quant-ph/0602196

    Article  ADS  Google Scholar 

  17. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006). arXiv:quant-ph/0603256

    Article  ADS  Google Scholar 

  18. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009). arXiv:0910.1396 [quant-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579 (2007). arXiv:quant-ph/0701184

    Article  ADS  Google Scholar 

  20. Laurat, J., Choi, K.S., Deng, H., Chou, C.W., Kimble, H.J.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007). arXiv:0706.0528 [quant-ph]

    Article  ADS  Google Scholar 

  21. López, C.E., Romero, G., Lastra, F., Solano, E., Retamal, J.C.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101, 080503 (2008). arXiv:0802.1825 [quant-ph]

    Article  Google Scholar 

  22. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007). arXiv:0804.2377 [quant-ph]

    Article  ADS  Google Scholar 

  23. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997). arXiv:quant-ph/9703041

    Article  ADS  Google Scholar 

  24. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). arXiv:quant-ph/9709029

    Article  ADS  Google Scholar 

  25. Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009). arXiv:0908.0238 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  26. Vacchini, B., Smirne, A., Laine, E.-M., Piilo, J., Breuer, H.-P.: Markovian and non-Markovian dynamics in quantum and classical systems. New J. Phys. 13, 093004 (2011). arXiv:1106.0138 [quant-ph]

    Article  ADS  Google Scholar 

  27. Chruściński, D., Kossakowski, A., Rivas, A.: Measures of non-Markovianity: divisibility versus backflow of information. Phys. Rev. A 83, 052128 (2011). arXiv:1102.4318 [quant-ph]

    Article  ADS  Google Scholar 

  28. Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014). arXiv:1405.0303 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  29. Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89, 042120 (2014). arXiv:1009.0845 [quant-ph]

    Article  ADS  Google Scholar 

  30. Kim, K.-I., Li, H.-M., Zhao, B.-K.: Genuine tripartite entanglement dynamics and transfer in a triple Jaynes–Cummings model. Int. J. Theor. Phys. 55, 241 (2016)

    Article  MATH  Google Scholar 

  31. Yönac, M., Yu, T., Eberly, J.H.: Pairwise concurrence dynamics: a four-qubit model. J. Phys. B At. Mol. Opt. Phys. 40, 545 (2007). arXiv:quant-ph/0701111

    Article  MathSciNet  Google Scholar 

  32. Greenberger, D.M., Horne, M., Zeilinger, A.: Going beyond bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer, Dordrecht (1989)

  33. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000). arXiv:quant-ph/0005115

    Article  ADS  MathSciNet  Google Scholar 

  34. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000). arXiv:quant-ph/9907047

    Article  ADS  Google Scholar 

  35. Ou, Y.U., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007). arXiv:quant-ph/0702127

    Article  ADS  MathSciNet  Google Scholar 

  36. Bennett, C.H., DiVincenzo, D.P., Smokin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996). arXiv:quant-ph/9604024

    Article  ADS  MathSciNet  Google Scholar 

  37. Uhlmann, A.: Fidelity and concurrence of conjugate states. Phys. Rev. A 62, 032307 (2000). arXiv:quant-ph/9909060

    Article  ADS  MathSciNet  Google Scholar 

  38. Lohmayer, R., Osterloh, A., Siewert, J., Uhlmann, A.: Entangled three-qubit states without concurrence and three-tangle. Phys. Rev. Lett. 97, 260502 (2006). arXiv:quant-ph/0606071

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Eltschka, C., Osterloh, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. 10, 043014 (2008). arXiv:0711.4477 [quant-ph]

    Article  ADS  Google Scholar 

  40. Jung, E., Hwang, M.R., Park, D.K., Son, J.W.: Three-tangle for rank-3 mixed states: mixture of Greenberger–Horne–Zeilinger, W and flipped W states. Phys. Rev. A 79, 024306 (2009). arXiv:0810.5403 [quant-ph]

    Article  ADS  Google Scholar 

  41. Jung, E., Park, D.K., Son, J.W.: Three-tangle does not properly quantify tripartite entanglement for Greenberger-Horne-Zeilinger-type state. Phys. Rev. A 80, 010301(R) (2009). arXiv:0901.2620 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  42. Jung, E., Hwang, M.R., Park, D.K., Tamaryan, S.: Three-party entanglement in tripartite teleportation scheme through noisy channels. Quant. Inf. Comput. 10, 0377 (2010). arXiv:0904.2807 [quant-ph]

    MathSciNet  MATH  Google Scholar 

  43. Eltschka, C., Siewert, J.: Entanglement of three-qubit Greenberger–Horne–Zeilinger-symmetric states. Phys. Rev. Lett. 108, 020502 (2012). arXiv:1304.6095 [quant-ph]

    Article  ADS  Google Scholar 

  44. Siewert, J., Eltschka, C.: Quantifying tripartite entanglement of three-qubit generalized Werner states. Phys. Rev. Lett. 108, 230502 (2012)

    Article  ADS  Google Scholar 

  45. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). arXiv:quant-ph/0102117

    Article  ADS  Google Scholar 

  46. Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)

    Article  ADS  Google Scholar 

  47. Maniscalco, S., Petruccione, F.: Non-Markovian dynamics of a qubit. Phys. Rev. A 73, 012111 (2006). arXiv:quant-ph/0509208

    Article  ADS  MathSciNet  Google Scholar 

  48. Kraus, K.: States, Effect, and Operations: Fundamental Notions in Quantum Theory. Springer, Berlin (1983)

    Book  Google Scholar 

  49. Costa, A.C.S., Angelo, R.M., Beims, M.W.: Monogamy and backflow of mutual information in non-Markovian thermal baths. Phys. Rev. A 90, 012322 (2014). arXiv:1404.6433 [quant-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaeKil Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D. Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment. Quantum Inf Process 15, 3189–3208 (2016). https://doi.org/10.1007/s11128-016-1331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1331-y

Keywords

Navigation