Skip to main content
Log in

Quantum speedup of uncoupled multiqubit open system via dynamical decoupling pulses

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a method to accelerate the dynamical evolution of mutltiqubit open system by employing dynamical decoupling pulses (DDPs) when the qubits are initially in W-type states. Here the qubits are independent and coupled to local Lorentzian reservoirs. It is found that this speedup evolution can be achieved in both the weak-coupling regime and the strong-coupling regime. The essential physical mechanism behind the acceleration evolution is explained as a result of the joint action of the non-Markovianity of reservoirs and the excited-state population of qubits. It is shown that both the non-Markovianity and the excited-state population can be controlled by DDPs to realize the quantum speedup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bekenstein, J.D.: Energy cost of information transfer. Phys. Rev. Lett. 46, 623 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  2. Yung, M.-H.: Quantum speed limit for perfect state transfer in one dimension. Phys. Rev. A 74, 030303(R) (2006)

    Article  ADS  Google Scholar 

  3. Warren, W.S., Rabitz, H., Dahleh, M.: Coherent control of quantum dynamics: the dream is alive. Science 259, 1581 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lloyd, S.: Ultimate physical limits to computation. Nature (London) 406, 1047 (2000)

    Article  ADS  Google Scholar 

  5. Lloyd, S.: Computational capacity of the Universe. Phys. Rev. Lett. 88, 237901 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Obada, A.-S.F., Abo-Kahla, D.A.M., Metwally, N., Abdel-Aty, M.: The quantum computational speed of a single Cooper-pair box. Phys. E 43, 1792 (2011)

    Article  Google Scholar 

  7. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)

    Article  ADS  Google Scholar 

  8. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  9. del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)

    Article  Google Scholar 

  10. Tsang, M.: Quantum metrology with open dynamical systems. New J. Phys. 15, 073005 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative Cram\(\acute{e}\)r–Rao bound. Phys. Rev. Lett. 112, 120405 (2014)

    Article  ADS  Google Scholar 

  12. Demkowicz-Dobrzański, R.: Quantum computation speedup limits from quantum metrological precision bounds. Phys. Rev. A. 91, 062322 (2015)

    Article  ADS  Google Scholar 

  13. Gordon, R.J., Rice, S.A.: Active control of the dynamics of atoms and molecules. Annu. Rev. Phys. Chem. 48, 601 (1997)

    Article  ADS  Google Scholar 

  14. Rabitz, H., de Vivie-Riedle, R., Motzkus, M., Kompa, K.: Whither the future of controlling quantum phenomena? Science 288, 824 (2000)

    Article  ADS  Google Scholar 

  15. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)

    Article  ADS  Google Scholar 

  16. Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett. 96, 060503 (2006)

    Article  ADS  MATH  Google Scholar 

  17. Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)

    Article  ADS  Google Scholar 

  18. Mukherjee, V., Carlini, A., Mari, A., Caneva, T., Montangero, S., Calarco, T., Fazio, R., Giovannetti, V.: Speeding up and slowing down the relaxation of a qubit by optimal control. Phys. Rev. A 88, 062326 (2013)

    Article  ADS  Google Scholar 

  19. Hegerfeldt, G.C.: Driving at the quantum speed limit: optimal control of a two-level system. Phys. Rev. Lett. 111, 260501 (2013)

    Article  ADS  Google Scholar 

  20. Hegerfeldt, G.C.: High-speed driving of a two-level system. Phys. Rev. A 90, 032110 (2014)

    Article  ADS  Google Scholar 

  21. Avinadav, C., Fischer, R., London, P., Gershoni, D.: Time-optimal universal control of two-level systems under strong driving. Phys. Rev. B 89, 245311 (2014)

    Article  ADS  Google Scholar 

  22. Deffner, S.: Optimal control of a qubit in an optical cavity. J. Phys. B 47, 145502 (2014)

    Article  ADS  Google Scholar 

  23. Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Nuovo Cimento A 16, 232 (1973)

    Article  ADS  Google Scholar 

  24. Bhattacharyya, K.: Quantum decay and the Mandelstam–Tamm-energy inequality. J. Phys. A 16, 2993 (1983)

    Article  ADS  Google Scholar 

  25. Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Vaidman, L.: Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 60, 182 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Uffink, J.: The rate of evolution of a quantum state. Am. J. Phys. 61, 935 (1993)

    Article  ADS  Google Scholar 

  28. Brody, D.C.: Elementary derivation for passage times. J. Phys. A 36, 5587 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)

    Article  ADS  Google Scholar 

  30. Liu, C., Xu, Z.-Y., Zhu, S.: Quantum-speed-limit time for multiqubit open systems. Phys. Rev. A 91, 022102 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)

    Article  Google Scholar 

  32. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  33. Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time optimal quantum evolution of mixed states. J. Phys. A 41, 045303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Brody, D.C., Graefe, E.-M.: Mixed-state evolution in the presence of gain and loss. Phys. Rev. Lett. 109, 230405 (2012)

    Article  ADS  Google Scholar 

  35. Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)

    Article  ADS  Google Scholar 

  36. Xu, Z.-Y., Luo, S., Yang, W.-L., Liu, C., Zhu, S.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)

    Article  ADS  Google Scholar 

  37. Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 4890 (2014)

    ADS  Google Scholar 

  38. Sun, Z., Liu, J., Ma, J., Wang, X.: Quantum speed limits in open systems: non-Markovian dynamics without rotating-wave approximation. Sci. Rep. 5, 8444 (2015)

    Article  ADS  Google Scholar 

  39. Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (Moscow) 9, 249 (1945)

    MathSciNet  MATH  Google Scholar 

  40. Uhlmann, A.: An energy dispersion estimate. Phys. Lett. A 161, 329 (1992)

    Article  ADS  Google Scholar 

  41. Pfeifer, P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70, 3365 (1993)

    Article  ADS  Google Scholar 

  42. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)

    Article  Google Scholar 

  43. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)

    Article  ADS  Google Scholar 

  44. Chau, H.F.: Tight upper bound of the maximum speed of evolution of a quantum state. Phys. Rev. A 81, 062133 (2010)

    Article  ADS  Google Scholar 

  45. Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A Math. Theor. 46, 335302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)

    Article  ADS  Google Scholar 

  47. Cimmarusti, A.D., Yan, Z., Patterson, B.D., Corcos, L.P., Orozco, L.A., Deffner, S.: Environment-assisted speed-up of the field evolution in cavity quantum electrodynamics. Phys. Rev. Lett. 114, 233602 (2015)

    Article  ADS  Google Scholar 

  48. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  49. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Santos, L.F., Viola, L.: Advantages of randomization in coherent quantum dynamical control. New J. Phys. 10, 083009 (2008)

    Article  ADS  Google Scholar 

  51. Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  52. Rossini, D., Facchi, P., Fazio, R., Florio, G., Lidar, D.A., Pascazio, S., Plastina, F., Zanardi, P.: Bang-bang control of a qubit coupled to a quantum critical spin bath. Phys. Rev. A 77, 052112 (2008)

    Article  ADS  Google Scholar 

  53. Chaudhry, A.Z., Gong, J.: Protecting and enhancing spin squeezing via continuous dynamical decoupling. Phys. Rev. A 86, 012311 (2012)

    Article  ADS  Google Scholar 

  54. Uhrig, G.S.: Keeping a quantum bit alive by optimized \(\pi \)-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007)

    Article  ADS  Google Scholar 

  55. Uhrig, G.S.: Exact results on dynamical decoupling by \(\pi \) pulses in quantum information processes. New J. Phys. 10, 083024 (2008)

    Article  ADS  Google Scholar 

  56. Pasini, S., Fischer, T., Karbach, P., Uhrig, G.S.: Optimization of short coherent control pulses. Phys. Rev. A 77, 032315 (2008)

    Article  ADS  Google Scholar 

  57. Witzel, W.M., Sarma, S.D.: Concatenated dynamical decoupling in a solid-state spin bath. Phys. Rev. B 76, 241303 (2007)

    Article  ADS  Google Scholar 

  58. Medford, J., Cywinński, L., Barthel, C., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Scaling of dynamical decoupling for spin qubit. Phys. Rev. Lett. 108, 086802 (2012)

    Article  ADS  Google Scholar 

  59. Khodjasteh, K., Lidar, D.A.: Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)

    Article  ADS  MATH  Google Scholar 

  60. Khodjasteh, K., Lidar, D.A.: Performance of deterministic dynamical decoupling schemes: concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007)

    Article  ADS  Google Scholar 

  61. West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)

    Article  ADS  Google Scholar 

  62. Yang, W., Liu, R.-B.: Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. Phys. Rev. Lett. 101, 180403 (2008)

    Article  ADS  Google Scholar 

  63. Gordon, G., Kurizki, G.: Preventing multipartite disentanglement by local modulations. Phys. Rev. Lett. 97, 110503 (2006)

    Article  ADS  Google Scholar 

  64. Gordon, G.: Dynamical decoherence control of multi-partite systems. J. Phys. B 42, 223001 (2009)

    Article  ADS  Google Scholar 

  65. Du, J., Rong, X., Zhao, N., Wang, Y., Yang, J., Liu, R.-B.: Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature (London) 461, 1265 (2009)

    Article  ADS  Google Scholar 

  66. Jing, J., Wu, L.-A., You, J.Q., Yu, T.: Nonperturbative quantum dynamical decoupling. Phys. Rev. A 88, 022333 (2013)

    Article  ADS  Google Scholar 

  67. Tan, Q.-S., Huang, Y., Yin, X., Kuang, L.-M., Wang, X.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)

    Article  ADS  Google Scholar 

  68. Tan, Q.-S., Huang, Y., Kuang, L.-M., Wang, X.: Dephasing-assisted parameter estimation in the presence of dynamical decoupling. Phys. Rev. A 89, 063604 (2014)

    Article  ADS  Google Scholar 

  69. Zhang, W., Hu, J.-L., Zhuang, J., You, J.Q., Liu, R.-B.: Protection of center-spin coherence by a dynamically polarized nuclear spin core. Phys. Rev. B 82, 045314 (2010)

    Article  ADS  Google Scholar 

  70. Wang, Z.-Y., Liu, R.-B.: Protection of quantum systems by nested dynamical decoupling. Phys. Rev. A 83, 022306 (2011)

    Article  ADS  Google Scholar 

  71. Yang, W., Wang, Z.-Y., Liu, R.-B.: Preserving qubit coherence by dynamical decoupling. Frontiers Phys. China 6, 2 (2011)

    ADS  Google Scholar 

  72. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  73. Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  74. Laine, E.-M., Piilo, J., Breuer, H.-P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)

    Article  ADS  Google Scholar 

  75. Wissmann, S., Karlsson, A., Laine, E.-M., Piilo, J., Breuer, H.-P.: Optimal state pairs for non-Markovian quantum dynamics. Phys. Rev. A 86, 062108 (2012)

    Article  ADS  Google Scholar 

  76. Wang, G.-Y., Tang, N., Liu, Y., Zeng, H.-S.: Rotation of Bloch sphere induced by Lamb shift in open two-level systems. Chin. Phys. B. 24(5), 050302 (2015)

    Article  ADS  Google Scholar 

  77. Zeng, H.-S., Tang, N., Zheng, Y.-P., Wang, G.-Y.: Equivalence of the measures of non-Markovianity for open two-level systems. Phys. Rev. A 84, 032118 (2011)

    Article  ADS  Google Scholar 

  78. Tang, N., Cheng, W., Zeng, H.-S.: Coherence, correlation and non-Markovianity in qubit systems. Eur. Phys. J. D 68, 278 (2014)

    Article  ADS  Google Scholar 

  79. He, Z., Zou, J., Li, L., Shao, B.: Effective method of calculating the non-Markovianity \({\cal {N}}\) for single-channel open systems. Phys. Rev. A 83, 012108 (2011)

    Article  ADS  Google Scholar 

  80. Xu, Z.-Y., Yang, W.-L., Feng, M.: Proposed method for direct measurement of the non-Markovian character of the qubits coupled to bosonic reservoirs. Phys. Rev. A 81, 044105 (2010)

    Article  ADS  Google Scholar 

  81. Thorwart, M., Hartmann, L., Goychuk, I., Hänggi, P.: Controlling decoherence of a two-level atom in a lossy cavity. J. Mod. Opt. 47, 2905 (2000)

    Article  ADS  Google Scholar 

  82. Tian, L., Lloyd, S., Orlando, T.P.: Decoherence and relaxation of a superconducting quantum bit during measurement. Phys. Rev. B 65, 144516 (2002)

    Article  ADS  Google Scholar 

  83. Chiorescu, I., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869 (2003)

    Article  ADS  Google Scholar 

  84. Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159 (2004)

    Article  ADS  Google Scholar 

  85. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  86. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  87. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  88. Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013)

    Article  ADS  Google Scholar 

  89. Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D.G., Nakamura, Y., Tsai, J.-S., Oliver, W.D.: Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565 (2011)

    Article  Google Scholar 

  90. Biercuk, M.J., Uys, H., VanDevender, A.P., Shiga, N., Itano, W.M., Bollinger, J.J.: Experimental Uhrig dynamical decoupling using trapped ions. Phys. Rev. A 79, 062324 (2009)

    Article  ADS  Google Scholar 

  91. Naydenov, B., Dolde, F., Hall, L.T., Shin, C., Fedder, H., Hollenberg, L.C.L., Jelezko, F., Wrachtrup, J.: Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011)

    Article  ADS  Google Scholar 

  92. Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)

    Article  ADS  Google Scholar 

  93. de Lange, G., Wang, Z.H., Ristè, D., Dobrovitski, V.V., Hanson, R.: Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60 (2010)

    Article  ADS  Google Scholar 

  94. Ryan, C.A., Hodges, J.S., Cory, D.G.: Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Fundamental Research Program of China (the 973 Program) under Grant No. 2013CB921804 and the National Natural Science Foundation of China under Grants No. 11375060, No. 11434011, No. 11547159, No. 11447102 and No. 11505055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Man Kuang.

Appendices

Appendix 1: Derivation of Eq. (16)

In this appendix, we present a detailed derivation of the quantum state of the N-qubit open system at arbitrary time, i.e., the quantum state given by Eq. (16). Here we assume that the N-qubit system is initially prepared in the W-type states

$$\begin{aligned} \left| \psi _{0}\right\rangle= & {} \alpha _{1}\left| 100\ldots 0\right\rangle +\alpha _{2}\left| 010\ldots 0\right\rangle +\cdots +\alpha _{N}\left| 000\ldots 1\right\rangle \nonumber \\= & {} \sum ^N_{j=1}\alpha _{j}\left| j\right\rangle , \end{aligned}$$
(23)

where the state \(\left| j\right\rangle \) means that only the jth qubit is in the excited state \(\left| 1\right\rangle \) and the other \(N-1\) qubits are in the ground state \(\left| 0\right\rangle \). Then the density operator of the initial state can be written as

$$\begin{aligned} \rho _{0}= & {} \left| \psi _{0}\right\rangle \left\langle \psi _{0}\right| \nonumber \\= & {} \sum ^N_{j=1}\left| \alpha _{j}\right| ^{2}\left| j\right\rangle \left\langle j\right| +\sum _{j\ne k}\alpha _{j}\alpha _{k}^{*}\left| j\right\rangle \left\langle k\right| \end{aligned}$$
(24)

In the case of single-qubit system, Eqs. (6) give rise to the following relations,

$$\begin{aligned} \sum _{i=1,2}K_{i}\left| 0\right\rangle \left\langle 0\right| K_{i}^{\dag }= & {} \left| 0\right\rangle \left\langle 0\right| , \end{aligned}$$
(25a)
$$\begin{aligned} \sum _{i=1,2}K_{i}\left| 0\right\rangle \left\langle 1\right| K_{i}^{\dag }= & {} \kappa _{t}\left| 0\right\rangle \left\langle 1\right| ,\end{aligned}$$
(25b)
$$\begin{aligned} \sum _{i=1,2}K_{i}\left| 1\right\rangle \left\langle 0\right| K_{i}^{\dag }= & {} \kappa _{t}\left| 1\right\rangle \left\langle 0\right| , \end{aligned}$$
(25c)
$$\begin{aligned} \sum _{i=1,2}K_{i}\left| 1\right\rangle \left\langle 1\right| K_{i}^{\dag }= & {} \kappa _{t}^{2}\left| 1\right\rangle \left\langle 1\right| +\left( 1-\kappa _{t}^{2}\right) \left| 0\right\rangle \left\langle 0\right| . \end{aligned}$$
(25d)

As for N-qubit system, by the use of Eqs. (25), we can obtain the actions of the Kraus operators on \(\left| j\right\rangle \left\langle k\right| (j, k=1,2,3, \cdots , N)\) as follows

$$\begin{aligned} \sum _{\mu _{1},\mu _{2},\ldots \mu _{N}}\left[ \otimes _{i=1}^{N}K_{\mu _{i}}\left( t\right) \right] \left| j\right\rangle \left\langle k\right| \left[ \otimes _{i=1}^{N}K_{\mu _{i}}^{\dag }\left( t\right) \right]= & {} \kappa _{t}^{2}\left| j\right\rangle \left\langle k\right| ,\quad (j \ne k)\end{aligned}$$
(26a)
$$\begin{aligned} \sum _{\mu _{1},\mu _{2},\ldots \mu _{N}}\left[ \otimes _{i=1}^{N}K_{\mu _{i}}\left( t\right) \right] \left| j\right\rangle \left\langle j\right| \left[ \otimes _{i=1}^{N}K_{\mu _{i}}^{\dag }\left( t\right) \right]= & {} \kappa _{t}^{2}\left| j\right\rangle \left\langle j\right| +\left( 1-\kappa _{t}^{2}\right) \nonumber \\&\left| 0\ldots 0\right\rangle \left\langle 0\ldots 0\right| . \end{aligned}$$
(26b)

Based on Eqs. (24), (26) and (12), the reduced density matrix of the N-qubit system at the time t can be expressed as

$$\begin{aligned} \rho _{t}= & {} \sum _{\mu _{1},\mu _{2},\ldots \mu _{N}}\left[ \otimes _{i=1}^{N}K_{\mu _{i}}\left( t\right) \right] \left[ \sum _{j}\left| \alpha _{j}\right| ^{2}\left| j\right\rangle \left\langle j\right| +\sum _{j\ne k}\alpha _{j}\alpha _{k}^{*}\left| j\right\rangle \left\langle k\right| \right] \left[ \otimes _{i=1}^{N}K_{\mu _{i}}^{\dag }\left( t\right) \right] \nonumber \\= & {} \sum _{j}\left| \alpha _{j}\right| ^{2}\bigg [ \kappa _{t}^{2}\left| j\right\rangle \left\langle j\right| +\left( 1-\kappa _{t}^{2}\right) \left| 0\ldots 0\right\rangle \left\langle 0\ldots 0\right| \bigg ]+\kappa _{t}^{2}\sum _{j\ne k}\alpha _{j}\alpha _{k}^{*}\left| j\right\rangle \left\langle k\right| \nonumber \\= & {} \kappa _{t}^{2}\rho _{0}+\left( 1-\kappa _{t}^{2}\right) \left| 0\ldots 0\right\rangle \left\langle 0\ldots 0\right| \nonumber \\= & {} P_{t}\left| \psi _{0}\right\rangle \left\langle \psi _{0}\right| +\left( 1-P_{t}\right) \left| 0\ldots 0\right\rangle \left\langle 0\ldots 0\right| , \end{aligned}$$
(27)

which exactly is the expression given by Eq. (16).

Appendix 2: The non-Markovianity measure

The non-Markovianity measure we employ here is based on the amount of information exchanged between the open system and its reservoir, which is defined as [73, 74]

$$\begin{aligned} \Gamma= & {} \max _{\rho _{1,2}(0)}\int _{\sigma (t)>0}\hbox {d}t\sigma (t), \end{aligned}$$
(28)

where \(\sigma (t)\) denotes the rate of change of the trace distance

$$\begin{aligned} \sigma (t)= & {} \frac{\hbox {d}}{\hbox {d}t}\mathcal {D}\left[ \rho _{1}(t),\rho _{2}(t)\right] , \end{aligned}$$
(29)

and the trace distance is defined as

$$\begin{aligned} \mathcal {D}\left[ \rho _{1}(t),\rho _{2}(t)\right]= & {} \frac{1}{2}\text {Tr}\left| \rho _{1}(t)-\rho _{2}(t)\right| . \end{aligned}$$
(30)

Physically, \(\sigma (t)<0 (\Gamma =0)\) holds for all dynamical semigroups and all time-dependent Markovian processes, while \(\sigma (t)> 0 (\Gamma >0)\) holds for non-Markovian dynamics. It is should be noted that the maximum in Eq. (28) is taken over all initial-state pairs of the system. Here we only consider the non-Markovianity in a pair of qubit–reservoir. It has been proved that, in the case of a qubit, the optimal initial-state pairs are always antipodal points on the Bloch sphere [75]. So we can assume \(\rho _{1,2}(0) =\left| \psi _{1,2}\left( 0\right) \right\rangle \left\langle \psi _{1,2}\left( 0\right) \right| , \left| \psi _{1}\left( 0\right) \right\rangle =\cos \theta \left| 1\right\rangle +\sin \theta \exp \left( i\varphi \right) \left| 0\right\rangle \) and \(\left| \psi _{2}\left( 0\right) \right\rangle = \sin \theta \left| 1\right\rangle -\cos \theta \exp \left( i\varphi \right) \left| 0\right\rangle \) with \(\theta \in \left[ 0,\pi /2\right] ,\varphi \in \left[ 0,2\pi \right] \). During the evolution time t, the optimal initial-state pair \(\rho _{1}(0)\) and \(\rho _{2}(0)\) evolve to the final-state pair \(\rho _{1}(t)\) and \(\rho _{2}(t)\). According to Eq. (4), we can obtain the simple expression of the trace distance between two final states at the time t

$$\begin{aligned} \mathcal {D}\left( \rho _{1}(t),\rho _{2}(t)\right)= & {} \sqrt{\cos ^{2}(2\theta )P_{t}^{2}+\sin ^{2}(2\theta )P_{t}}. \end{aligned}$$
(31)

What is more, as the Bloch sphere governed by Eq. (4) is rotation symmetrical with respect to the z axis, the most strongest oscillating direction is probably either the pole direction or any direction in the equatorial plane. In other words, the optimal initial-state pair should be either \( \left\{ \left| 0\right\rangle ,\left| 1\right\rangle \right\} (\theta =0)\) or \( \left\{ \left| +\right\rangle ,\left| -\right\rangle \right\} (\theta =\pi /4)\) with \(\left| \pm \right\rangle =\left( \left| 0\right\rangle \pm e^{i\varphi }\left| 1\right\rangle \right) /\sqrt{2}\) [7680].

Substituting Eq. (31) and Eq. (29) into Eq. (28), we can obtain the simple expression of the measure of non-Markovianity within the driving time \(\tau \)

$$\begin{aligned} \Gamma= & {} \text {max}\{\Gamma _{\theta =0},\Gamma _{\theta =\pi /4}\}, \end{aligned}$$
(32)

where the two non-Markovianity parameters \(\Gamma _{\theta =0}\) and \(\Gamma _{\theta =\pi /4}\) are defined by

$$\begin{aligned} \Gamma _{\theta =0}= & {} \int _{0,\dot{P}_{t}>0}^{\tau }\dot{P}_{t}\hbox {d}t,\end{aligned}$$
(33a)
$$\begin{aligned} \Gamma _{\theta =\pi /4}= & {} \int _{0,\dot{P}_{t}>0}^{\tau }\frac{\dot{P}_{t}}{2\sqrt{p_{t}}}\hbox {d}t. \end{aligned}$$
(33b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YJ., Kuang, LM. & Tan, QS. Quantum speedup of uncoupled multiqubit open system via dynamical decoupling pulses. Quantum Inf Process 15, 2325–2342 (2016). https://doi.org/10.1007/s11128-016-1291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1291-2

Keywords

Navigation