Skip to main content
Log in

The operator-sum-difference representation of a quantum noise channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

When a model for quantum noise is exactly solvable, a Kraus (or operator-sum) representation can be derived from the spectral decomposition of the Choi matrix for the channel. More generally, a Kraus representation can be obtained from any positive-sum (or ensemble) decomposition of the matrix. Here we extend this idea to any Hermitian-sum decomposition. This yields what we call the “operator-sum-difference” (OSD) representation, in which the channel can be represented as the sum and difference of “subchannels.” As one application, the subchannels can be chosen to be analytically diagonalizable, even if the parent channel is not (on account of the Abel-Galois irreducibility theorem), though in this case the number of the OSD representation operators may exceed the channel rank. Our procedure is applicable to general Hermitian (completely positive or non-completely positive) maps and can be extended to the more general, linear maps. As an illustration of the application, we derive an OSD representation for a two-qubit amplitude-damping channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  2. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  3. Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A: Math. Theor. 40, 13735 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  5. Omkar, S., Srikanth, R., Banerjee, S.: Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quant. Info. Proc. 12, 3725 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Turchette, Q.A., Myatt, C.J., King, B.E., Sackett, C.A., et al.: Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  7. Brune, M., Hagley, E., Dreyer, J., Maitre, X., et al.: Observing the progressive decoherence of the meter in a quantum measurement. Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  8. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Kraus, K.: States, Effects and Operations. Springer, Berlin (1983)

    MATH  Google Scholar 

  10. Choi, M.D.: Positive linear maps on c*-algebras. Can. J. Math. 24, 520 (1972)

    Article  MATH  Google Scholar 

  11. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MATH  Google Scholar 

  12. Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Dynamics of initially entangled open quantum systems. Phys. Rev. A 70, 052110 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Leung, D.W.: Choi’s proof and quantum process tomography. J. Math. Phys. 44, 528–33 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Ficek, Z., Tanaś, R.: Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 372, 369 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Artin, E.: Galois Theory. Dover, (2004)

  16. Banerjee, S., Ravishankar, V., Srikanth, R.: Entanglement dynamics in two-qubit open system interacting with a squeezed thermal bath via quantum nondemolition interaction. Euro. Phys. J. D. 56, 277 (2010)

    Article  ADS  Google Scholar 

  17. Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Shabani, A., Lidar, D.A.: Maps for general open quantum systems and a theory of linear quantum error correction. Phys. Rev. A 80, 012309 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the comments of the anonymous referees, who have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srikanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omkar, S., Srikanth, R. & Banerjee, S. The operator-sum-difference representation of a quantum noise channel. Quantum Inf Process 14, 2255–2269 (2015). https://doi.org/10.1007/s11128-015-0965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0965-5

Keywords

Navigation