Skip to main content
Log in

Quantum walk with a general coin: exact solution and asymptotic properties

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present closed-form expressions for the wave function that governs the evolution of the discrete-time quantum walk on the line when the coin operator is arbitrary. The formulas were derived assuming that the walker can either remain put in the place or proceed in a fixed direction but never move backward, although they can be easily modified to describe the case in which the particle can travel in both directions. We use these expressions to explore properties of magnitudes associated to the process, as the probability mass function or the probability current, even though we also consider the asymptotic behavior of the exact solution. Within this approximation, we will estimate upper and lower bounds, examine the origins of an emerging approximate symmetry, and deduce the general form of the stationary probability density of the relative location of the walker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Some of the intermediate expressions shown along this paper may be ill-defined when either \(\theta =0\) or \(\theta =\frac{\pi }{2}\). In spite of that, the final formulas we obtain are still valid in the full range.

  2. In Ref. [30] we discussed the virtues of the alternative choice \(N=2^m\), with \(m\) the smallest integer for which it holds \(t<2^m\). With this setting one can resort to the fast Fourier transform to perform all the calculations, thereby greatly reducing the overall computational time, a point that may be very relevant for large values of \(t\).

  3. We show below how \(|\psi _{1}(1,1)|^2\) can be understood as the (rightward) “initial velocity” of our walker. In a bidirectional scheme, \(|\psi _{0}(0,1)|^2\) would play the role of the leftward “initial velocity.”

  4. This idea of expressing the evolution of the walker in terms of a unique magnitude which follows a recursive equation is not new, e.g., in Ref. [3], we find one of such recursion formulas which involves non-constant coefficients. Especially relevant is, in this sense, Ref. [23] where it is derived the bidirectional equivalent of Eq. (31) on the basis of the properties of the Chebyshev polynomials of the second kind.

  5. For that reason \(\bar{\rho }_\mathrm{med}(n,t)\) and \(\bar{\rho }_\mathrm{osc}(n,t)\) are sometimes referred as the slow component and the fast component of \(\bar{\rho }(n,t)\), respectively [2].

  6. For notational convenience, \(N\) and \(T\) may alternate or even coexist in expressions in this appendix.

  7. In fact, Eq. (71) is valid also in the range \(n\in \{t+1,\ldots ,N-1\}\). However, if one evaluates Eq. (71) for any of these values, one will obtain \(\psi _{0,1}(n,t)=0\) identically.

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Nayak, N., Vishwanath, A.: Quantum Walk on the Line. arXiv:quant-ph/0010117 (2000)

  3. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM New York, New York, pp. 37–49 (2001)

  4. Travaglione, B.C., Milburn, G.J.: Implementing the quantum random walk. Phys. Rev. A 65, 032310 (2002)

    Article  ADS  Google Scholar 

  5. Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1, 345–354 (2003)

    Article  MathSciNet  Google Scholar 

  6. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    Article  ADS  Google Scholar 

  7. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. Childs, A., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35–43 (2003)

    Article  MathSciNet  Google Scholar 

  11. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  12. Agliari, E., Blumen, A., Nülken, O.: Quantum-walk approach to searching on fractal structures. Phys. Rev. A 82, 012305 (2010)

    Article  ADS  Google Scholar 

  13. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40, 142–164 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Flitney, A.P., Abbott, D., Johnson, N.F.: Quantum walks with history dependence. J. Phys. A 37, 7581–7591 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Bulger, D., Freckleton, J., Twamley, J.: Position-dependent and cooperative quantum Parrondo walks. New J. Phys. 10, 093014 (2008)

    Article  ADS  Google Scholar 

  16. Chandrashekar, C.M., Banerjee, S.: Parrondo’s game using a discrete-time quantum walk. Phys. Lett. A 375, 1553–1558 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5, 83 (2003)

    Article  ADS  Google Scholar 

  18. Bach, E., Coppersmith, S., Goldschen, M.P., Joynt, R., Watrous, J.: One-dimensional quantum walks with absorbing boundaries. J. Comput. Syst. Sci. 69, 562–592 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chandrashekar, C.M., Srikanth, R., Laflamme, R.: Optimizing the discrete time quantum walk using a SU(2) coin. Phys. Rev. A 77, 032326 (2008)

    Article  ADS  Google Scholar 

  20. Chandrashekar, C.M., Srikanth, R., Banerjee, S.: Symmetries and noise in quantum walk. Phys. Rev. A 76, 022316 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 86, 195414 (2012)

    Article  ADS  Google Scholar 

  22. Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Process. 11, 1107–1148 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fuss, I., White, L., Sherman, P., Naguleswaran, S.: An analytic solution for one-dimensional quantum walks. arXiv:0705.0077 (2007)

  24. Villagra, M., Nakanishi, M., Yamashita, S., Nakashima, Y.: Quantum walks on the line with phase parameters. IEICE Trans. Inf. Syst. E95.D, 722–730 (2012)

    Article  ADS  Google Scholar 

  25. Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  26. Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Soc. Jpn. 57, 1179–1195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bressler, A., Pemantle, R.: Quantum random walks in one dimension via generating functions. In: Proceedings of the 2007 Conference on Analysis of Algorithms, pp. 403–414 (2007)

  28. Ahlbrecht, A., Vogts, H., Werner, A.H., Werner, R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52, 042201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hoyer, S., Meyer, D.A.: Faster transport with a directed quantum walk. Phys. Rev. A 79, 024307 (2009)

    Article  ADS  Google Scholar 

  30. Montero, M.: Unidirectional quantum walks: evolution and exit times. Phys. Rev. A 88, 012333 (2013)

    Article  ADS  Google Scholar 

  31. Hillery, M., Bergou, J., Feldman, E.: Quantum walks based on an interferometric analogy. Phys. Rev. A 68, 032314 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Cambridge University Press, Cambridge (1953)

  33. Romanelli, A.: Thermodynamic behavior of the quantum walk. Phys. Rev. A 85, 012319 (2012)

    Article  ADS  Google Scholar 

  34. Romanelli, A., Segundo, G.: The entanglement temperature of the generalized quantum walk. Phys. A 393, 646–654 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author acknowledges partial support from the former Spanish Ministerio de Ciencia e Innovación under Contract No. FIS2009-09689, from the Spanish Ministerio de Economía y Competitividad under Contract No. FIS2013-47532-C3-2-P, and from Generalitat de Catalunya, Contract No. 2014SGR608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Montero.

Appendices

Appendix 1: Exact solution

In this appendix, we provide explicit details on the derivation of the closed-form expressions for the two components of the wave function given in the main text, Eqs. (20) and (21), starting from the recursive formulas (18) and (19). The approach that follows is similar to the one taken in our previous work [30] and differs from the broadest method in the use of the discrete Fourier transform (DFT) instead of the discrete-time Fourier transform [7].

Let \(f(n)\) be a given set of \(N\) complex numbers, \(n~\in ~\{0,\ldots , N-1\}\), and denote its DFT by \(\tilde{f}(r)\),

$$\begin{aligned} \tilde{f}(r)\equiv \sum _{n=0}^{N-1} f(n) {\text {e}}^{i 2 \pi r n/N}, \end{aligned}$$
(68)

for \(r\in \{0,\ldots , N-1\}\). The \(N\) complex quantities \(\tilde{f}(r)\) thus defined keep exactly the same information contained in the original series, and therefore, one can recover \(f(n)\) from \(\tilde{f}(r)\) by means of the so-called inverse DFT formula

$$\begin{aligned} f(n)\equiv \frac{1}{N}\sum _{r=0}^{N-1} \tilde{f}(r) {\text {e}}^{-i 2 \pi r n/N}. \end{aligned}$$
(69)

The DFT is well suited to convert recursive relationships in the position domain, as Eqs. (18) and (19), into a set of algebraic equations in the Fourier domain. In our case, however, the recursive formulas involve not only different locations but different instants of time, so we must carefully choose \(f(n)\) and \(N\) itself to preserve the overall coherence.

To this end, let us introduce the auxiliary time horizon \(T\), \(T\ge 0\), set \(N\equiv T+1\), and consider the following definition for the DFT of \(\psi _{0,1}(n,t)\), valid for any \(t\), \(t~\in ~\{0,\ldots , T\}\)Footnote 6

$$\begin{aligned} \tilde{\psi }_{0,1}(r,t;T)\equiv \sum _{n=0}^{N-1} \psi _{0,1}(n,t) {\text {e}}^{i 2 \pi r n/N}, \end{aligned}$$
(70)

where it is implicitly assumed that \(\psi _{0,1}(n,t)=0\) for any \(n\ge t+1\). This definition entails that \(\tilde{\psi }_{0,1}(r,t;T)\) is an explicit function of \(T\): that is, for a fixed value of \(r\) and a fixed value of \(t\), different choices of \(T\) lead to different values for \(\tilde{\psi }_{0,1}(r,t;T)\). Nonetheless, the final result that one gets after applying the corresponding inversion formula,

$$\begin{aligned} \psi _{0,1}(n,t)\equiv \frac{1}{N}\sum _{r=0}^{N-1} \tilde{\psi }_{0,1}(r,t;T) {\text {e}}^{-i 2 \pi r n/N}, \end{aligned}$$
(71)

does not depend on \(T\) for a fixed choice of \(n\) and \(t\), as long as \(0\le n\le t\le N-1\)Footnote 7 Therefore, the conclusion is that Eq. (71) will be valid for any \(N\), \(N\ge t+1\).

At this point, we can safely move Eqs. (18) and (19) into the Fourier domain:

$$\begin{aligned} \tilde{\psi }_{0}(r,t;T)&= \cos \theta \, \tilde{\psi }_{0}(r,t-1;T) +{\text {e}}^{-i \varphi }\sin \theta \,\tilde{\psi }_1(r,t-1;T), \end{aligned}$$
(72)
$$\begin{aligned} \tilde{\psi }_{1}(r,t;T)&= {\text {e}}^{i \varphi }\sin \theta \, {\text {e}}^{i 2 \pi r/N}\tilde{\psi }_{0}(r,t-1;T)\nonumber \\ {}&- \cos \theta \, {\text {e}}^{i 2 \pi r/N}\tilde{\psi }_{1}(r,t-1;T). \end{aligned}$$
(73)

The initial values for \(\tilde{\psi }_{0,1}(r,t;T)\) are \(\tilde{\psi }_{0}(r,0;T)=\cos \eta \), \(\tilde{\psi }_{1}(r,0;T)=\sin \eta \), for \(r \in \{0,\ldots ,N-1\}\). The resolution of Eqs. (72) and (73) can be tackled through standard matrix techniques, thus resulting in

$$\begin{aligned} \tilde{\psi }_{0}(r,t;T)&= \frac{{\text {e}}^{-i\pi \frac{r}{N}}}{2\cos \omega _{\frac{r}{N}}}\Big \{ (\lambda _+)^t \left[ \left( \cos \theta -\lambda _-\right) \cos \eta + {\text {e}}^{-i \varphi }\sin \theta \sin \eta \right] \nonumber \\&\quad -(\lambda _-)^t \left[ \left( \cos \theta -\lambda _+\right) \cos \eta + {\text {e}}^{-i \varphi }\sin \theta \sin \eta \right] \Big \}, \end{aligned}$$
(74)

and

$$\begin{aligned} \tilde{\psi }_{1}(r,t;T)&= \frac{\left( \lambda _+ -\cos \theta \right) \left( \cos \theta -\lambda _-\right) {\text {e}}^{-i\pi \frac{r}{N}}}{2\cos \omega _{\frac{r}{N}}}\nonumber \\&\quad \times \Bigg \{ (\lambda _+)^t \left[ \frac{\cos \eta \, {\text {e}}^{i \varphi }}{\sin \theta } +\frac{\sin \eta }{\cos \theta -\lambda _-} \right] \nonumber \\&\quad -\,(\lambda _-)^t \left[ \frac{\cos \eta \, {\text {e}}^{i \varphi }}{\sin \theta } -\frac{\sin \eta }{\lambda _+ -\cos \theta } \right] \Bigg \}, \end{aligned}$$
(75)

with \(\lambda _{\pm }\) functions of \(r/N\),

$$\begin{aligned} \lambda _+&\equiv {\text {e}}^{-i(\omega _{\frac{r}{N}}-\pi \frac{r}{N})},\end{aligned}$$
(76)
$$\begin{aligned} \lambda _-&\equiv -{\text {e}}^{i(\omega _{\frac{r}{N}}+\pi \frac{r}{N})}, \end{aligned}$$
(77)

and where \(\omega _{\frac{r}{N}}\) is an angle that, given \(r\) and \(N\), satisfies

$$\begin{aligned} \sin \omega _{\frac{r}{N}}=\cos \theta \,\sin \frac{\pi r}{N}. \end{aligned}$$
(78)

Note that, since \(r\in \{0,\ldots ,N-1\}\), we have

$$\begin{aligned} 0\le \sin \omega _{\frac{r}{N}}\le \cos \theta \le 1, \end{aligned}$$

so, to prevent any uncertainty, we consider that \(\omega _{\frac{r}{N}}\) is the only solution that Eq. (78) has in \([0,\frac{\pi }{2}]\).

Now, we can simply introduce the value of \(\tilde{\psi }_{0,1}(r,t;T)\) given in (74) and (75) into Eq. (71) and recover \(\psi _{0,1}(n,t)\) after the computation of a finite sum. Note that, at this point, our procedure has yielded a closed-form expression for the wave function; thus, we could simply stop here. However, we are going to simplify the final formulas as much as possible: In this way, we can get a more detailed view of the properties of the solution.

To manage the complexity of this endeavor we analyze the particular case \(\eta =0\) first. Let us begin with \(\psi _{0}(n,t)\):

$$\begin{aligned} \psi _{0}(n,t)&= \frac{1}{N}\sum _{r=0}^{N-1} \frac{{\text {e}}^{-i\pi (2n +1) \frac{r}{N}}}{2\cos \omega _{\frac{r}{N}}}\left\{ (\lambda _+)^t\left( \cos \theta -\lambda _-\right) \right. \nonumber \\&\quad -\left. (\lambda _-)^t \left( \cos \theta -\lambda _+\right) \right\} . \end{aligned}$$
(79)

If we use Eq. (78) in conjunction with the definition of \(\lambda _{\pm }\), Eqs. (76) and (77), we can show that

$$\begin{aligned} {\text {e}}^{-i\pi r /N}\left( \cos \theta - \lambda _{\pm }\right) =\cos \theta \cos \frac{\pi r}{N} \mp \cos \omega _{\frac{r}{N}} \end{aligned}$$
(80)

holds, and that consequently

$$\begin{aligned} \psi _{0}(n,t)&= \frac{1}{2N}\left[ \left( \cos \theta +1\right) - (-1)^t\left( \cos \theta -1 \right) \right] \nonumber \\&\quad +\frac{1}{2N}\sum _{r=1}^{N-1} \frac{\cos \theta \cos \frac{\pi r}{N}}{\cos \omega _{\frac{r}{N}}} {\text {e}}^{-i\left[ \pi (2n-t)\frac{r}{N}+ \omega _{\frac{r}{N}}t\right] }\nonumber \\&\quad +\frac{1}{2N}\sum _{r=1}^{N-1} {\text {e}}^{-i\left[ \pi (2n-t)\frac{r}{N}+ \omega _{\frac{r}{N}}t\right] }\nonumber \\&\quad -\frac{(-1)^t}{2N}\sum _{r=1}^{N-1} \frac{\cos \theta \cos \frac{\pi r}{N}}{\cos \omega _{\frac{r}{N}}} {\text {e}}^{-i\left[ \pi (2n-t)\frac{r}{N}- \omega _{\frac{r}{N}}t\right] }\nonumber \\&+\quad \frac{(-1)^t}{2N}\sum _{r=1}^{N-1} {\text {e}}^{-i\left[ \pi (2n-t)\frac{r}{N}- \omega _{\frac{r}{N}}t\right] }. \end{aligned}$$
(81)

Here, we have isolated in the first term all the contribution coming from the \(r=0\) case. This step is necessary to rearrange the two last summations by introducing a new variable \(s\), \(s\equiv N-r\),

$$\begin{aligned} \psi _{0}(n,t)&= \frac{1}{2N}\left[ \left( \cos \theta +1\right) - (-1)^t\left( \cos \theta -1 \right) \right] \nonumber \\&\quad +\,\frac{1}{2N}\sum _{r=1}^{N-1} \frac{\cos \theta \cos \frac{\pi r}{N}}{\cos \omega _{\frac{r}{N}}} {\text {e}}^{-i\left[ \pi (2n-t)\frac{r}{N}+ \omega _{\frac{r}{N}}t\right] }\nonumber \\&\quad +\,\frac{1}{2N}\sum _{r=1}^{N-1} {\text {e}}^{-i\left[ \pi (2n-t)\frac{r}{N}+ \omega _{\frac{r}{N}}t\right] }\nonumber \\&\quad +\,\frac{1}{2N}\sum _{s=1}^{N-1} \frac{\cos \theta \cos \frac{\pi s}{N}}{\cos \omega _\frac{s}{N}} {\text {e}}^{i\left[ \pi (2n-t)\frac{s}{N}+ \omega _\frac{s}{N} t\right] }\nonumber \\&\quad +\,\frac{1}{2N}\sum _{s=1}^{N-1} {\text {e}}^{i\left[ \pi (2n-t)\frac{s}{N}+ \omega _\frac{s}{N} t\right] }, \end{aligned}$$
(82)

where the following identities

$$\begin{aligned} \omega _{\frac{r}{N}}&= \omega _{\frac{s}{N}},\\ \cos \frac{\pi r}{N}&= -\cos \frac{\pi s}{N}, \end{aligned}$$

have been taken into account. Finally, we find

$$\begin{aligned} \psi _{0}(n,t)&= \frac{1}{2N}\left[ \left( \cos \theta +1\right) - (-1)^t\left( \cos \theta -1\right) \right] \nonumber \\&\quad +\frac{1}{N}\sum _{r=1}^{N-1} \left[ 1+\frac{\cos \theta \cos \frac{\pi r}{N}}{\cos \omega _{\frac{r}{N}}}\right] \cos \bigg [\pi (2n-t)\frac{r}{N}+ \omega _{\frac{r}{N}}t\bigg ]. \end{aligned}$$
(83)

In the case of \(\psi _{1}(n,t)\), we can proceed in a similar way. The result

$$\begin{aligned} \psi _{1}(n,t)&= \frac{{\text {e}}^{i \varphi }\sin \theta }{N}\Bigg \{\frac{1 - (-1)^t}{2}\nonumber \\&\quad +\sum _{r=1}^{N-1} \frac{1 }{\cos \omega _{\frac{r}{N}}} \cos \bigg [\pi (2n-t-1)\frac{r}{N}+ \omega _{\frac{r}{N}}t\bigg ]\Bigg \}, \end{aligned}$$
(84)

is almost immediate once one realizes that

$$\begin{aligned} \left( \lambda _{+}-\cos \theta \right) \left( \cos \theta - \lambda _{-}\right) {\text {e}}^{-i\pi r /N}=\sin ^2\theta \,{\text {e}}^{i\pi r /N}, \end{aligned}$$

an expression that combines Eqs. (78) and (80).

Analogously, when \(\eta =\frac{\pi }{2}\) we obtain

$$\begin{aligned} \psi _{0}(n,t)&= \frac{{\text {e}}^{-i\varphi }\sin \theta }{N}\Bigg \{\frac{1 - (-1)^t}{2}\nonumber \\&\quad +\sum _{r=1}^{N-1} \frac{1}{\cos \omega _{\frac{r}{N}}} \cos \bigg [\pi (2n-t+1)\frac{r}{N}+ \omega _{\frac{r}{N}}t\bigg ]\Bigg \}, \end{aligned}$$
(85)

and

$$\begin{aligned} \psi _{1}(n,t)&= \frac{1}{2N}\left[ \left( 1-\cos \theta \right) + (-1)^t\left( 1+\cos \theta \right) \right] \nonumber \\&\quad +\frac{1}{N}\sum _{r=1}^{N-1} \left[ 1-\frac{\cos \theta \cos \frac{\pi r}{N}}{\cos \omega _{\frac{r}{N}}}\right] \cos \bigg [\pi (2n-t)\frac{r}{N}+ \omega _{\frac{r}{N}}t\bigg ], \end{aligned}$$
(86)

by simply applying the same ideas and intermediate formulas.

Finally, we can recover the general solution, Eqs. (20) and (21), through the superposition of these two cases.

Appendix 2: Asymptotic expressions

In this appendix, we obtain asymptotic expressions for \(\psi _{0,1}(n,t)\) and \(\rho (n,t)\), formulas with a restricted validity but which in turn are more compact and readable than the exact ones.

We begin with a close analysis of the inner structure of the different pieces that compose Eqs. (20) and (21). The conclusion is that, in essence, we must find a way to approximate functions like \(h(n,t)\),

$$\begin{aligned} h(n,t)\equiv \frac{\Xi (t)}{N} +\frac{1}{N}\sum _{r=1}^{N-1} g(r/N) \cos \left[ \varPhi (n,r,t;T)+\upsilon \pi r/N\right] , \end{aligned}$$
(87)

where

$$\begin{aligned} \varPhi (n,r,t;T)\equiv \pi (2n-t)r/N+ \omega _{\frac{r}{N}}t, \end{aligned}$$
(88)

and \(\upsilon \in \{-1,0,1\}\). In every case, \(g(\cdot )\) is a smooth function, and therefore, the behavior of the cosine terms does determine the overall result of the sum. Due to the presence of \(\omega _{\frac{r}{N}}\) within \(\varPhi (n,r,t;T)\), the argument of these cosine functions does not change linearly with \(r\) but exhibits a maximum, and then, the use an adapted version of the method of the stationary phase is the one most indicated in this case [30, 32]: Only those terms for which \(\varPhi (n,r,t;T)\) attains its maximum are relevant, whereas the rest of them are negligible.

To this end, let us first define \(u\equiv r/N\), and \(\nu \equiv n/t\), in terms of which we can rewrite \(\varPhi (n,r,t;T)\),

$$\begin{aligned} \varPhi (\nu t,u (T-1) ,t;T)=\phi (\nu , u)t, \end{aligned}$$
(89)

with

$$\begin{aligned} \phi (\nu ,u)\equiv \pi (2\nu -1) u+ \omega _u. \end{aligned}$$
(90)

Our next step is to consider the function \(h(n,t)\) in the continuum limit, \(N\rightarrow \infty \),

$$\begin{aligned} h(n,t)&\sim \int _0^{1}g(u) \cos \left[ \phi (\nu ,u) t+\upsilon \pi u\right] {\text {d}}u\nonumber \\&\sim \mathrm{Re}\left\{ \int _0^{1}g(u){\text {e}}^{i \upsilon \pi u} {\text {e}}^{i\phi (\nu ,u) t} {\text {d}}u\right\} , \end{aligned}$$
(91)

and to expand \(\phi (\nu ,u)\) in the vicinity of \(u_0\),

$$\begin{aligned} \phi (\nu ,u)&\sim \phi (\nu ,u_0)+\frac{1}{2}\frac{\partial ^2\phi (\nu ,u_0)}{\partial u^2}(u-u_0)^2\\&= \phi _0(\nu )+\frac{1}{2}\phi ''_0(\nu )(u-u_0)^2, \end{aligned}$$

where \(u_0\) is the point for which, given \(\nu \), \(\phi (\nu ,u)\) has its maximum:

$$\begin{aligned} \frac{\partial \phi (\nu ,u_0)}{\partial u}= \pi (2\nu -1) +\frac{\pi \cos \theta \cos \pi u_0}{\sqrt{1-\cos ^2\theta \sin ^2 \pi u_0}}=0. \end{aligned}$$
(92)

From Eq. (92), we have

$$\begin{aligned} \cos \pi u_0 =\frac{1-2\nu }{2\sqrt{\nu (1-\nu )}}\tan \theta , \end{aligned}$$
(93)

and

$$\begin{aligned} \sin \pi u_0 =\frac{1}{2\cos \theta }\sqrt{\frac{\cos ^2\theta -(2\nu -1)^2}{\nu (1-\nu )}}. \end{aligned}$$
(94)

Equation (94) shows us that the validity of the present approximation is restricted to values of \(\nu \) for which one has \(\cos ^2\theta -(2\nu -1)^2\ge 0\); that is,

$$\begin{aligned} \frac{1}{2}\left( 1-\cos \theta \right) \le \nu \le \frac{1}{2} \left( 1+\cos \theta \right) , \end{aligned}$$

since, by construction, \(\cos \theta \ge 0\). Also from Eqs. (22) and (94), we get

$$\begin{aligned} \sin \omega _0&\equiv \sin \omega _{u_0}=\frac{1}{2}\sqrt{\frac{\cos ^2\theta -(2\nu -1)^2}{\nu (1-\nu )}}, \end{aligned}$$
(95)
$$\begin{aligned} \cos \omega _0&\equiv \cos \omega _{u_0}=\frac{\sin \theta }{2\sqrt{\nu (1-\nu )}}, \end{aligned}$$
(96)

expressions that will be helpful in forthcoming derivations.

Now, we can fully evaluate Eq. (91) under the above premises:

$$\begin{aligned} h(n,t)&\sim \mathrm{Re}\left\{ \int _0^{1}g(u){\text {e}}^{i \upsilon \pi u} {\text {e}}^{i\phi (\nu ,u) t} {\text {d}}u\right\} \nonumber \\&\sim \mathrm{Re}\left\{ \int _0^{1}g(u_0){\text {e}}^{i \upsilon \pi u_0} {\text {e}}^{i t\left[ \phi _0(\nu )+\frac{1}{2}\phi ''_0(\nu )(u-u_0)^2\right] } {\text {d}}u\right\} \nonumber \\&\sim \mathrm{Re}\left\{ g(u_0){\text {e}}^{i \left[ \upsilon \pi u_0+\phi _0(\nu ) t\right] }\int _{-\infty }^{\infty } {\text {e}}^{\frac{i t}{2}\phi ''_0(\nu )(u-u_0)^2} {\text {d}}u\right\} \nonumber \\&= \sqrt{\frac{2 \pi }{t|\phi ''_0(\nu )|}} g(u_0) \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}+\upsilon \pi u_0\right] , \end{aligned}$$
(97)

with

$$\begin{aligned} \phi ''_0(\nu ) =-4 \pi ^2 \nu (1-\nu )\frac{\sqrt{\cos ^2\theta -(2\nu -1)^2}}{\sin \theta }. \end{aligned}$$
(98)

The approximate versions of Eqs. (20) and (21) are

$$\begin{aligned} \psi _{0}(n,t)&\sim \frac{\cos \eta }{\sqrt{t}} \sqrt{\frac{2(1-\nu )\sin \theta }{\pi \nu \sqrt{\cos ^2\theta -(2\nu -1)^2}}} \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}\right] \nonumber \\&+\frac{{\text {e}}^{-i \varphi }\sin \eta }{\sqrt{t}} \sqrt{\frac{2\sin \theta }{\pi \sqrt{\cos ^2\theta -(2\nu -1)^2}}} \nonumber \\&\quad \times \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}+\pi u_0\right] , \end{aligned}$$
(99)

and

$$\begin{aligned} \psi _{1}(n,t)&\sim \frac{{\text {e}}^{i\varphi }\cos \eta }{\sqrt{t}} \sqrt{\frac{2\sin \theta }{\pi \sqrt{\cos ^2\theta -(2\nu -1)^2}}} \nonumber \\&\quad \times \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}-\pi u_0\right] \nonumber \\&+ \frac{\sin \eta }{\sqrt{t}} \sqrt{\frac{2\nu \sin \theta }{\pi (1-\nu )\sqrt{\cos ^2\theta -(2\nu -1)^2}}} \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}\right] , \end{aligned}$$
(100)

and they follow from Eq. (97) once one realizes, cf. Eqs. (93) and (96), that if

$$\begin{aligned} g(u)= 1+\frac{\cos \theta \cos \pi u}{\cos \omega _u}, \end{aligned}$$

one gets

$$\begin{aligned} g(u_0)= 2(1-\nu ); \end{aligned}$$

if

$$\begin{aligned} g(u)= \frac{\sin \theta }{\cos \omega _u}, \end{aligned}$$

one has

$$\begin{aligned} g(u_0)= 2\sqrt{\nu (1-\nu )}; \end{aligned}$$

and finally, if

$$\begin{aligned} g(u)= 1-\frac{\cos \theta \cos \pi u}{\cos \omega _u}, \end{aligned}$$

one obtains

$$\begin{aligned} g(u_0)= 2\nu . \end{aligned}$$

To derive the asymptotic expression for \(\rho (n,t)\), one has to calculate \(\left| \psi _{0,1}(n,t)\right| ^2\) first:

$$\begin{aligned} \left| \psi _0(n,t)\right| ^2&\sim \frac{2}{\pi t} \sqrt{\frac{1-\nu }{\nu }}\frac{\sin \theta }{\sqrt{\cos ^2\theta -(2\nu -1)^2}} \nonumber \\&\quad \times \Bigg \{\sqrt{\frac{1-\nu }{\nu }}\cos ^2\eta \cos ^2\left[ \phi _0(\nu ) t-\frac{\pi }{4}\right] \nonumber \\&+ \sqrt{\frac{\nu }{1-\nu }}\sin ^2\eta \cos ^2\left[ \phi _0(\nu ) t-\frac{\pi }{4}+ \pi u_0\right] \nonumber \\&+\sin 2\eta \cos \varphi \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}\right] \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}+ \pi u_0\right] \Bigg \},\qquad \quad \end{aligned}$$
(101)

and

$$\begin{aligned} \left| \psi _1(n,t)\right| ^2&\sim \frac{2}{\pi t} \sqrt{\frac{\nu }{1-\nu }}\frac{\sin \theta }{\sqrt{\cos ^2\theta -(2\nu -1)^2}} \nonumber \\&\quad \times \Bigg \{\sqrt{\frac{1-\nu }{\nu }} \cos ^2\eta \cos ^2\left[ \phi _0(\nu ) t-\frac{\pi }{4}-\pi u_0\right] \nonumber \\&+\sqrt{\frac{\nu }{1-\nu }}\sin ^2\eta \cos ^2\left[ \phi _0(\nu ) t-\frac{\pi }{4}\right] \nonumber \\&+\sin 2\eta \cos \varphi \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}\right] \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}-\pi u_0\right] \Bigg \},\qquad \quad \end{aligned}$$
(102)

then use the following trigonometric identities,

$$\begin{aligned}&2\cos ^2\left[ \phi _0(\nu ) t-\frac{\pi }{4}\right] = 1+ \sin \left[ 2\phi _0(\nu ) t\right] ,\\&2\cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}\right] \cos \left[ \phi _0(\nu ) t-\frac{\pi }{4}\pm \pi u_0\right] \\&=\cos \pi u_0 +\cos \pi u_0 \sin \left[ 2\phi _0(\nu ) t\right] \pm \sin \pi u_0 \cos \left[ 2\phi _0(\nu ) t\right] ,\\&2\cos ^2\left[ \phi _0(\nu ) t-\frac{\pi }{4}\pm \pi u_0\right] \\&=1+\cos 2\pi u_0 \sin \left[ 2\phi _0(\nu ) t\right] \pm \sin 2\pi u_0 \cos \left[ 2\phi _0(\nu ) t\right] , \end{aligned}$$

in coordination with Eqs. (93) to (96), to ultimately obtain

$$\begin{aligned} \rho (n,t)&\sim \frac{1}{2 \pi t} \frac{1}{\nu (1-\nu )}\frac{\sin \theta }{\sqrt{\cos ^2\theta -(2\nu -1)^2}} \nonumber \\&\quad \times \Bigg \{1-(2\nu -1) \bigg [\cos 2\eta +\sin 2\eta \tan \theta \cos \varphi \nonumber \\&+\left( \frac{2\nu -1}{\cos ^2\theta }-\cos 2\eta -\sin 2\eta \tan \theta \cos \varphi \right) \sin \left[ 2\phi _0(\nu ) t\right] \nonumber \\&+\sqrt{1-\frac{(2\nu -1)^2}{\cos ^2\theta }}\left( \cos 2\eta \tan \theta -\sin 2\eta \cos \varphi \right) \cos \left[ 2\phi _0(\nu ) t\right] \bigg ]\Bigg \}\nonumber \\&\equiv \bar{\rho }(n,t). \end{aligned}$$
(103)

This expression leads to Eq. (48) after a straightforward trigonometric transformation.

Note finally that, beyond being cornerstones in the calculation of \(\bar{\rho }(n,t)\), Eqs. (99) and (100) are worth by themselves: There are problems that require precise information about the asymptotic behavior of each wave function, as in [33, 34].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero, M. Quantum walk with a general coin: exact solution and asymptotic properties. Quantum Inf Process 14, 839–866 (2015). https://doi.org/10.1007/s11128-014-0908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0908-6

Keywords

Navigation