Skip to main content

Advertisement

Log in

Cognitive abilities that mediate SES’s effect on elementary mathematics learning: The Uruguayan tablet-based intervention

  • Trends/Cases
  • Published:
PROSPECTS Aims and scope Submit manuscript

Abstract

In unequal societies the effectiveness of formal education depends on the socioeconomic status (SES) of students. Studies have shown that poverty affects the development of the brain in ways that might compromise future learning, thus increasing the differences between groups with different SES. Interest is growing in the development of tools that might change this state of affairs. This article presents a tablet-based study aimed at determining the cognitive abilities related to primary school children’s math learning. The study followed the students’ changes during a short intervention, the purpose of which was to improve students’ performance of some of the core components of mathematical cognition; in particular, of the approximate number system (ANS), a system that supports one’s ability to estimate quantities and to compare time intervals. The article presents the study’s characteristics and shows how the variables that were evaluated—ANS precision, time discrimination accuracy, digit span, and mathematical achievement—depend on SES. We employ multiple regressions to show that the variance in mathematics performance attributed to SES can be explained by differences in underlying cognitive factors. The study also indicates that those students of low-SES schools who participated in more tablet activities increased their performance more than students who did fewer activities. Although the intervention’s initial objective was to influence mathematical development and the study is not a randomized double-blind study, we argue that training the ANS can have positive effects in mathematics learning, and that this might benefit children living in low-SES contexts more than those in the general population, perhaps because of the former’s initially low levels of performance in school mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • ANEP [Administración Nacional de Educación Primaria] (2012). Relevamiento de contexto sociocultural de las escuelas de educación primaria [Survey of primary school’s socio-cultural context]. Montevideo: ANEP. http://www.anep.edu.uy/anep/index.php/codicen-publicaciones/category/117-publicaciones-division-de-investigacion-y-estadistica-educativa?download=1132:relevamiento-de-contexto-sociocultural-2010.

  • Banerjee, A., Duflo, E., Goldberg, N., Karlan, D., Osei, R., Parienté, W., et al. (2015). A multifaceted program causes lasting progress for the very poor: Evidence from six countries. Science, 348(6236). doi:10.1126/science.1260799.

  • Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102, 14116–14121.

    Article  Google Scholar 

  • Carey, S. (2001). Cognitive foundations of arithmetic: Evolution and ontogenesis. Mind and Language, 16(1), 37–55. doi:10.1111/1468-0017.00155.

    Article  Google Scholar 

  • Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172. doi:10.1016/j.actpsy.2014.01.016.

    Article  Google Scholar 

  • de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences of the United States of America, 111, 4809–4813.

    Article  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  Google Scholar 

  • DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6, 1–10.

    Article  Google Scholar 

  • Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123(1), 53–72. doi:10.1016/j.jecp.2014.01.013.

    Article  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Science, 8(7), 307–314. doi:10.1016/j.tics.2004.05.002.

    Article  Google Scholar 

  • Gathercole, S. E., Woolgar, F., Kievit, R. A., Astle, D., Manly, T., & Holmes, J. (2016). How common are WM deficits in children with difficulties in reading and mathematics? Journal of Applied Research in Memory and Cognition (in press). doi:10.1016/j.jarmac.2016.07.013.

    Google Scholar 

  • Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability (3rd ed.). Austin, TX: Pro-Ed.

    Google Scholar 

  • Goldin, A. P., Hermida, M. J., Shalom, D. E., Costa, M. E., Lopez-Rosenfeld, M., Segretin, M. S., et al. (2014). Far transfer to language and math of a short software-based gaming intervention. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6443–6448. doi:10.1073/pnas.1320217111.

    Article  Google Scholar 

  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The approximate number system in 3-, 4-, 5-, 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465.

    Article  Google Scholar 

  • Halberda, J., & Ly, R. (2015). PANAmath: The psychophysical assessment of number-sense acuity. (Manuscript in Preparation)

  • Halberda, J., Ly, R., Wilmer, J., Naiman, D., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11116–11120.

    Article  Google Scholar 

  • Halberda, J., Mazzocco, M., & Feigenson, L. (2008). Individual differences in nonverbal number acuity predict maths achievement. Nature, 455, 665–668.

    Article  Google Scholar 

  • Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92–107.

    Article  Google Scholar 

  • Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–10385. doi:10.1073/pnas.0812142106.

    Article  Google Scholar 

  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45, 850–867.

    Article  Google Scholar 

  • Kirkland, L. D., Manning, M., Osaki, K., & Hicks, D. (2015). Increasing logico-mathematical thinking in low SES preschoolers. Journal of Research in Childhood Education, 29(3), 275–286.

    Article  Google Scholar 

  • Lefevre, J. A., Kwarchuk, S. L., Smith-Chant, B. L., Fast, L., Kamawar, D., & Bisanz, J. (2009). Home numeracy experiences and children’s math performance in the early school years. Canadian Journal of Behavioural Science, 41(2), 55–66. doi:10.1037/a0014532.

    Article  Google Scholar 

  • Libertus, M. E. (2015). The role of intuitive approximation skills for school math abilities. Mind, Brain, and Education, 9(2), 112–120.

    Article  Google Scholar 

  • Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental Science, 13(6), 900–906. doi:10.1111/j.1467-7687.2009.00948.x.

    Article  Google Scholar 

  • Lipina, S. J., & Colombo, J. A. (2009). Poverty and brain development during childhood: An approach from cognitive psychology and neuroscience. Washington, DC: American Psychological Association.

    Book  Google Scholar 

  • Lipina, S. J., & Posner, M. I. (2012). The impact of poverty on the development of brain networks. Frontiers in Human Neuroscience, 6, 238–250.

    Article  Google Scholar 

  • Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability. Child Development, 82, 1224–1237.

    Article  Google Scholar 

  • National Mathematics Advisory Panel (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.

    Google Scholar 

  • Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208. doi:10.1146/annurev.neuro.051508.135550.

    Article  Google Scholar 

  • Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology: General, 143(1), 255–265. doi:10.1037/a0030825.

    Article  Google Scholar 

  • Odic, D., Libertus, M., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49(6), 1103.

    Article  Google Scholar 

  • Odic, D., Valle Lisboa, J., Eisinger, R., Gonzalez, M., Maiche, A., & Halberda, J. (2016). Approximate number and approximate time discrimination each correlate with school math abilities in young children. Acta Psychologica, 163, 17–26.

    Article  Google Scholar 

  • Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013–2019. doi:10.1177/0956797613482944.

    Article  Google Scholar 

  • Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., et al. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science (in press). doi:10.1111/desc.12372.

    Google Scholar 

  • Seo, K. H., & Ginsburg, H. P. (2004). What is developmentally appropriate in early childhood mathematics education? Lessons from new research. In D. H. Clements, J. Sarama, & A. M. DiBiase (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 91–104). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Sigman, M., Peña, M., Goldin, A. P., & Ribeiro, S. (2014). Neuroscience and education: Prime time to build the bridge. Nature Neuroscience, 17, 497–502.

    Article  Google Scholar 

  • Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417–453.

    Article  Google Scholar 

  • Tosto, M. G., Petrill, S. A., Halberda, J., Trzaskowski, M., Tikhomirova, T. N., Bogdanova, O., et al. (2014). Why do we differ in number sense? Evidence from a genetically sensitive investigation. Intelligence, 43(1), 35–46. doi:10.1016/j.intell.2013.12.007.

    Article  Google Scholar 

  • Valle Lisboa, J., Mailhos, A., Eisinger, R., Halberda, J., González, M., Luzardo, M., et al. (2016). Estimulación a escala poblacional utilizando tablets: Del sistema numérico aproximado a la matemática simbólica [Population-scale stimulation using tablets: From the approximate number system to symbolic mathematics]. In S. Lipina, M. Sigman, & D. Fernnández-Slezak (Eds.), Pensar las TICs desde las ciencias cognitivas y la neurociencia (pp. 147–172). Buenos Aires: Gedisa.

    Google Scholar 

  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Science, 7(11), 483–488. doi:10.1016/j.tics.2003.09.002.

    Article  Google Scholar 

  • Wilkinson, R., & Pickett, K. (2010). The spirit level: Why equality is better for everyone. London: Penguin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Valle-Lisboa.

Additional information

This work was supported by Centro Ceibal para el Apoyo a la Educación de la Niñez y la Adolescencia, Uruguay. We thank Diego Cuevasanta, Cecilia Hontou, Gonzalo Grau, and Leticia Carve for their help in the first 10 days of the intervention. We also thank the principals, teachers, and staff of the participant schools for their help during the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle-Lisboa, J., Cabana, Á., Eisinger, R. et al. Cognitive abilities that mediate SES’s effect on elementary mathematics learning: The Uruguayan tablet-based intervention. Prospects 46, 301–315 (2016). https://doi.org/10.1007/s11125-017-9392-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11125-017-9392-y

Keywords

Navigation