Skip to main content
Log in

Coleataenia prionitis, a C4-like species in the Poaceae

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

C4-like plants represent the penultimate stage of evolution from C3 to C4 plants. Although Coleataenia prionitis (formerly Panicum prionitis) has been described as a C4 plant, its leaf anatomy and gas exchange traits suggest that it may be a C4-like plant. Here, we reexamined the leaf structure and biochemical and physiological traits of photosynthesis in this grass. The large vascular bundles were surrounded by two layers of bundle sheath (BS): a colorless outer BS and a chloroplast-rich inner BS. Small vascular bundles, which generally had a single BS layer with various vascular structures, also occurred throughout the mesophyll together with BS cells not associated with vascular tissue. The mesophyll cells did not show a radial arrangement typical of Kranz anatomy. These features suggest that the leaf anatomy of C. prionitis is on the evolutionary pathway to a complete C4 Kranz type. Phosphoenolpyruvate carboxylase (PEPC) and pyruvate, Pi dikinase occurred in the mesophyll and outer BS. Glycine decarboxylase was confined to the inner BS. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) accumulated in the mesophyll and both BSs. C. prionitis had biochemical traits of NADP-malic enzyme type, whereas its gas exchange traits were close to those of C4-like intermediate plants rather than C4 plants. A gas exchange study with a PEPC inhibitor suggested that Rubisco in the mesophyll could fix atmospheric CO2. These data demonstrate that C. prionitis is not a true C4 plant but should be considered as a C4-like plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Net CO2 assimilation rate

BS:

Bundle sheath

CE:

Carboxylation efficiency

Chl:

Chlorophyll

C i :

Intercellular CO2 concentration

DCDP:

3,3-Dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate

Г :

CO2 compensation point

GDC:

Glycine decarboxylase

GDC-P:

Glycine decarboxylase P protein

IVD:

Interveinal distance

LSU:

Large subunit

M/BS tissue area ratio:

Ratio of mesophyll area to BS area

NAD-ME:

NAD-malic enzyme

NADP-ME:

NADP-malic enzyme

PEPC:

Phosphoenolpyruvate carboxylase

PCK:

Phosphoenolpyruvate carboxykinase

PPDK:

Pyruvate, Pi dikinase

PPFD:

Photosynthetic photon flux density

PWUE:

Photosynthetic water use efficiency

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

T r :

Transpiration rate

References

  • Aliscioni SS, Giussani LM, Zuloaga FO, Kellogg EA (2003) A molecular phylogeny of Panicum (Poaceae: Paniceae): test of monophyly and phylogenetic placement within the Panicoideae. Am J Bot 90:796–821

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Cantabrana H, von Caemmerer S (2016) Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3–C4 intermediate species. J Exp Bot 67:3109–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauwe H (1984) Photosynthetic enzyme activities and immunofluorescence studies on the localization of ribulose 1,5-bisphosphate carboxylase/oxygenase in leaves of C3, C4 and C3–C4 intermediate species of Flaveria (Asteraceae). Biochem Physiol Pflanz 179:253–268

    Article  CAS  Google Scholar 

  • Bauwe H, Chollet R (1986) Kinetic properties of phosphoenolpyruvate carboxylase from C3, C4, and C3–C4 intermediate species of Flaveria (Asteraceae). Plant Physiol 82:695–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohley K, Schröder T, Kesselmeier J, Ludwing M, Kadereit G (2019) C4-like photosynthesis and the effects of leaf senescence on C4-like physiology in Sesuvium sesuvioides (Aizoaceae). J Exp Bot 70:1553–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RH, Bouton JH, Rigsby L, Rigler M (1983) Photosynthesis of grass species differing in carbon dioxide fixation pathways. VIII. Ultrastructural characteristics of Panicum species in the Laxa group. Plant Physiol 71:425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RH, Byrd GT, Black CC (1991) Assessing the degree of C4 photosynthesis in C3–C4 species using an inhibitor of phosphoenolpyruvate carboxylase. Plant Physiol 97:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WV (1975) Variations in anatomy, associations, and origins of Kranz tissue. Am J Bot 62:395–402

    Article  Google Scholar 

  • Brown WV (1977) The Kranz syndrome and its subtypes in grass systematics. Mem Torrey Bot Club 23:1–97

    CAS  Google Scholar 

  • Cheng S-H, Moore BD, Edwards GE, Ku MSB (1988) Photosynthesis in Flaveria brownii, a C4-like species. Leaf anatomy, characteristics of CO2 exchange, compartmentation of photosynthetic enzymes, and metabolism of 14CO2. Plant Physiol 87:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18:37–43

    Article  CAS  PubMed  Google Scholar 

  • Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ (2013) Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc Natl Acad Sci USA 110:1381–1386

    Article  CAS  PubMed  Google Scholar 

  • Dengler RE, Dengler NG (1990) Leaf vascular architecture in the atypical C4 NADP-malic enzyme grass Arundinella hirta. Can J Bot 68:1208–1221

    Article  Google Scholar 

  • Edwards GE, Ku MSB (1987) Biochemistry of C3–C4 intermediates. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, Photosynthesis. Academic Press, New York, pp 275–325

    Google Scholar 

  • Edwards GE, Voznesenskaya EV (2011) C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht, pp 29–61

    Google Scholar 

  • Ehleringer JR, Osmond CB (1989) Stable isotopes. In: Pearcy PW, Ehleringer JR, Mooney HA, Randel PW (eds) Plant physiological ecology. Chapman & Hall, London, pp 281–300

    Chapter  Google Scholar 

  • Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24:411–439

    Article  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body, their structure, function, and development, 3rd edn. Wiley, New Jersey, pp 1–601

    Book  Google Scholar 

  • Fisher A, McDade LA, Kiel CA, Khoshravesh R, Johnson MA, Stata M, Sage TL, Sage RF (2015) Evolutionary history of Blepharis (Acanthaceae) and the origin of C4 photosynthesis in section Acanthodium. Int J Plant Sci 176:770–790

    Article  Google Scholar 

  • Giussani LM, Cota-Sanchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88:1993–2012

    Article  CAS  PubMed  Google Scholar 

  • Gowik U, Westhoff P (2011) C4-phosphoenolpyruvate carboxylase. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht, pp 257–275

    Google Scholar 

  • Gutierrez M, Gracen VE, Edwards GE (1974) Biochemical and cytological relationships in C4 plants. Planta 119:279–300

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama Y, Ueno O (2016) Intracellular position of mitochondria and chloroplasts in bundle sheath and mesophyll cells of C3 grasses in relation to photorespiratory CO2 loss. Plant Prod Sci 19:540–551

    Article  CAS  Google Scholar 

  • Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106

    Article  CAS  Google Scholar 

  • Hattersley PW (1984) Characterization of C4 type leaf anatomy in grasses (Poaceae). Mesophyll: bundle sheath area ratios. Ann Bot 53:163–179

    Article  Google Scholar 

  • Hattersley PW, Browning AJ (1981) Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheaths and PCR (Kranz) sheaths. Protoplasma 109:371–401

    Article  Google Scholar 

  • Hattersley PW, Watson L (1975) Anatomical parameters for predicting photosynthetic pathways of grass leaves: the maximum lateral cell count and the maximum cells distant count. Phytomorphology 25:325–333

    Google Scholar 

  • Hattersley PW, Watson L, Johnston CR (1982) Remarkable leaf anatomical variations in Neurachne and its allies (Poaceae) in relation to C3 and C4 photosynthesis. Bot J Linn Soc 84:265–272

    Article  CAS  Google Scholar 

  • Hattersley PW, Wong S-H, Perry S, Roksandic Z (1986) Comparative ultrastructure and gas exchange characteristics of the C3–C4 intermediate Neurachne minor S. T. Blake (Poaceae). Plant Cell Environ 9:217–233

    CAS  Google Scholar 

  • Henning JC, Brown RH (1986) Effects of irradiance and temperature on photosynthesis in C3, C4 and C3/C4Panicum species. Photosynth Res 10:101–112

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CLD (1989) Effects of the phosphoenolpyruvate carboxylase inhibitor 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)propenoate on photosynthesis. C4 selectivity and studies on C4 photosynthesis. Plant Physiol 89:1231–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins CLD, Harris RLN, McFadden HG (1987) 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate, a new, specific inhibitor of phosphoenolpyruvate carboxylase. Biochem Int 14:219–226

    CAS  Google Scholar 

  • Khoshravesh R, Akhani H, Sage TL, Nordenstam B, Sage RF (2012) Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophulariaceae). J Exp Bot 63:5645–5658

    Article  CAS  PubMed  Google Scholar 

  • Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, Sage TL (2016) C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. J Exp Bot 67:3065–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku MSB, Wu J, Dai Z, Scott RA, Chu C, Edwards GE (1991) Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol 96:518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leegood RC (2013) Strategies for engineering C4 photosynthesis. J Plant Physiol 170:378–388

    Article  CAS  PubMed  Google Scholar 

  • Lundgren MR, Christin PA, Escobar EG, Ripley B, Besnard G, Long CM, Hattersley PW, Ellis RP, Leegood RC, Osborne CP (2016) Evolutionary implications of C3–C4 intermediate in the grass Alloteropsis semialata. Plant Cell Environ 39:1874–1885

    Article  CAS  PubMed  Google Scholar 

  • Lundgren MR, Dunning LT, Olofsson JK et al (2019) C4 anatomy can evolve via a single developmental change. Ecol Lett 22:302–312

    Article  PubMed  Google Scholar 

  • Mallmann J, Heckmann D, Brautigam A, Lercher MJ, Weber APM, Westhoff P, Gowik U (2014) The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife 3:e02478

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchetti ZY, Acenolaza PG (2011) Evaluation of the relationships between floristic heterogeneity of Panicum prionitis Nees tall grasslands and the fire history, hydrological regime and soil texture in the Parana River floodplain, Argentina. Interciencia 36:600–607

    Google Scholar 

  • Massa ES, Oakley LI, Prado DE, Feldman SR (2016) Resilience of a Panicum prionitis Nees tall grassland under different management alternatives. Ecol Aust 26:236–245

    Article  Google Scholar 

  • Mertz RA, Brutnell TP (2014) Bundle sheath suberization in grass leaves: multiple barriers to characterization. J Exp Bot 65:3371–3380

    Article  PubMed  Google Scholar 

  • Monson RK, Schuster WS, Ku MSB (1987) Photosynthesis in Flaveria brownii A.M. Powell. A C4-like C3–C4 intermediate. Plant Physiol 85:1063–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monson RK, Teeri JA, Ku MSB, Gurevitch J, Mets LJ, Dudley S (1988) Carbon-isotope discrimination by leaves of Flaveria species exhibiting different amounts of C3 and C4-cycle co-function. Planta 174:145–151

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Ku MSB, Edwards GE (1989) Expression of C4-like photosynthesis in several species of Flaveria. Plant Cell Environ 12:541–549

    Article  Google Scholar 

  • Morgan JA, Brown RH (1979) Photosynthesis of grass species differing in carbon dioxide fixation pathways. II. A search for species with intermediate gas exchange and anatomical characteristics. Plant Physiol 64:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan JA, Brown RH, Reger BJ (1980) Photosynthesis of grass species differing in carbon dioxide fixation pathways. III. Oxygen response and enzyme activities of species in the Laxa group of Panicum. Plant Physiol 65:156–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemannet PE (1989) Determination of accurate extension coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Powell AM (1978) Systematics of Flaveria (Flaveriinae–Asteraceae). Annu Missouri Bot Gard 65:590–636

    Article  Google Scholar 

  • Prendergast HDV, Hattersley PW, Stone NE (1987) New structural/biochemical associations in leaf blade of C4 grasses (Poaceae). Aust J Plant Physiol 14:403–420

    CAS  Google Scholar 

  • Rawsthorne S (1992) C3–C4 intermediate photosynthesis: linking physiology to gene expression. Plant J 2:267–274

    Article  CAS  Google Scholar 

  • Reed JE, Chollet R (1985) Immunofluorescent localization of phosphoenolpyruvate carboxylase and ribulose 1,5-bisphosphate carboxylase/oxygenase proteins in leaves of C3, C4 and C3–C4 intermediate Flaveria species. Planta 165:439–445

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Kocacinar F, Sage TL (2014) From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. J Exp Bot 65:3341–3356

    Article  PubMed  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Sato R, Suzuki Y (2010) Carbon and nitrogen stable isotope analysis by elemental analyzer-isotope ratio mass spectrometer (EA/IRMS). Res Org Chem 26:21–29

    Google Scholar 

  • Schlüter U, Weber APM (2016) The road to C4 photosynthesis: evolution of a complex trait via intermediate states. Plant Cell Physiol 57:881–889

    Article  PubMed  Google Scholar 

  • Sedelnikova OV, Hughes TE, Langdale JA (2018) Understanding the genetic basis of C4 Kranz anatomy with a view to engineering C3 crops. Annu Rev Genet 52:249–270

    Article  CAS  PubMed  Google Scholar 

  • Ueno O (1992) Immunogold localization of photosynthetic enzymes in leaves of Aristida latifolia, a unique C4 grass with a double chlorenchymatous bundle sheath. Physiol Plant 85:189–196

    Article  CAS  Google Scholar 

  • Ueno O (1995) Occurrence of distinctive cells in leaves of C4 species in Arthraxon and Microstegium (Andropogoneae-Poaceae) and the structural and immunocytochemical characterization of these cells. Int J Plant Sci 156:270–289

    Article  Google Scholar 

  • Ueno O (2001) Environmental regulation of C3 and C4 differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiol 127:1524–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno O (2004) Environmental regulation of photosynthetic metabolism in the amphibious sedge Eleocharis baldwinii and comparisons with related species. Plant Cell Environ 27:627–639

    Article  CAS  Google Scholar 

  • Ueno O, Hatakeyama Y (2018) Presence of chloroplasts in mestome sheath cells of the C3 pooid grass Elymus tsukushiensis. Plant Prod Sci 21:322–327

    Article  CAS  Google Scholar 

  • Ueno O, Ishimaru K (2002) Effects of an inhibitor of phosphoenolpyruvate carboxylase on photosynthesis of the terrestrial forms of amphibious Eleocharis species. Photosynth Res 71:265–272

    Article  CAS  PubMed  Google Scholar 

  • Ueno O, Kawano Y, Wakayama M, Takeda T (2006) Leaf vascular systems in C3 and C4 grasses: a two-dimensional analysis. Ann Bot 97:611–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno O, Sentoku N (2006) Comparison of leaf structure and photosynthetic characteristics of C3 and C4Alloteropsis semialata subspecies. Plant Cell Environ 29:257–268

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Chuong SDX, Koteyeva NK, Edwards GE, Franceschi VR (2005) Functional compartmentation of C4 photosynthesis in the triple-layered chlorenchyma of Aristida (Poaceae). Funct Plant Biol 32:67–77

    Article  CAS  PubMed  Google Scholar 

  • Wakayama M, Ohnishi J, Ueno O (2006) Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta. Planta 223:1243–1255

    Article  CAS  PubMed  Google Scholar 

  • Yorimitsu Y, Kadosono A, Hatakeyama Y, Yabiku T, Ueno O (2019) Transition from C3 to proto-Kranz to C3–C4 intermediate type in the genus Chenopodium (Chenopodiaceae). J Plant Res 132:839–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura Y, Kubota F, Ueno O (2004) Structural and biochemical bases of photorespiration in C4 plants: quantification of organelles and glycine decarboxylase. Planta 220:307–317

    Article  CAS  PubMed  Google Scholar 

  • Zuloaga FO, Salariato DL, Scataglini A (2018) Molecular phylogeny of Panicum s. str. (Poaceae, Panicoideae, Paniceae) and insights into biogeography and evolution. PLoS ONE 13(2):e0191529

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. S. Agarie and K. Saitou, Kyushu University, for their cooperation and valuable comments. We also thank Dr. C. Jenkins for supplying DCDP, Drs. S. Muto, D. Oliver and T. Sugiyama for supplying antisera, and the Plant Introduction Station, ARS, USDA and the NARO genebank for their gifts of seeds. This study was supported by the Japan Society for the Promotion of Science KAKENHI (Grant No. JP16H94868) to O.U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Ueno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1. Gross morphology of Coleataenia prionitis.Supplementary file1 (TIF 8075 KB)

Figure S2. A cleared leaf of Coleataenia prionitis. Supplementary file2 (TIF 14001 KB)

11120_2020_808_MOESM3_ESM.tif

Figure S3. Immunohistochemical localization of enzymes in leaves of the control C4 plant, Sorghum bicolor. Supplementary file3 (TIF 16472 KB)

11120_2020_808_MOESM4_ESM.tif

Figure S4. Quantification of immunogold labelling of enzymes in leaves of Coleataenia prionitis. Supplementary file4 (TIF 3407 KB)

11120_2020_808_MOESM5_ESM.tif

Figure S5. Effects of concentrations of DCDP on PEPC activity in leaf extracts of Coleataenia prionitis. Supplementary file5 (TIF 1569 KB)

11120_2020_808_MOESM6_ESM.tif

Figure S6. Comparison of enzyme localization in leaves of C4-like and C4 grasses having a double chlorenchymatous bundle sheath. Supplementary file6 (TIF 5969 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashima, M., Yabiku, T. & Ueno, O. Coleataenia prionitis, a C4-like species in the Poaceae. Photosynth Res 147, 211–227 (2021). https://doi.org/10.1007/s11120-020-00808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00808-w

Keywords

Navigation