Skip to main content

Advertisement

Log in

Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Fucoxanthin-chlorophyll (Chl) a/c–binding proteins (FCPs) are light-harvesting pigment–protein complexes found in diatoms and brown algae. Due to the characteristic pigments, such as fucoxanthin and Chl c, FCPs can capture light energy in blue-to green regions. A pennate diatom Phaeodactylum tricornutum synthesizes a red-shifted form of FCP under weak or red light, extending a light-absorption ability to longer wavelengths. In the present study, we examined changes in light-harvesting and energy-transfer processes of P. tricornutum cells grown under white- and single-colored light-emitting diodes (LEDs). The red-shifted FCP appears in the cells grown under the green, yellow, and red LEDs, and exhibited a fluorescence peak around 714 nm. Additional energy-transfer pathways are established in the red-shifted FCP; two forms (F713 and F718) of low-energy Chl a work as energy traps at 77 K. Averaged fluorescence lifetimes are prolonged in the cells grown under the yellow and red LEDs, whereas they are shortened in the blue-LED-grown cells. Based on these results, we discussed the light-adaptation machinery of P. tricornutum cells involved in the red-shifted FCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFDA:

Absolute fluorescence decay-associated

Car:

Carotenoid

Chl:

Chlorophyll

FCP:

Fucoxanthin Chl a/c-binding protein

FDA:

Fluorescence decay-associated

LED:

Light-emitting diode

LHC:

Light-harvesting complex

PS:

Photosystem

RC:

Reaction center

TRF:

Time-resolved fluorescence

References

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489

    Article  CAS  Google Scholar 

  • Akimoto S, Yokono M, Yokono E, Aikawa S, Kondo A (2014) Short-term light adaptation of a cyanobacterium, Synechocystis sp. PCC 6803, probed by time-resolved fluorescence spectroscopy. Plant Physiol Biochem 81:149–154

    Article  CAS  Google Scholar 

  • Akimoto S, Shinoda T, Chen M, Allakhverdiev SI, Tomo T (2015) Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies. Photosynth Res 125:115–122

    Article  CAS  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Brettel K, Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507:100–114

    Article  CAS  Google Scholar 

  • Brown JS (1967) Fluorometric evidence for the participation of chlorophyll a-695 in System 2 of photosynthesis. Biochim Biophys Acta 143:391–398

    Article  CAS  Google Scholar 

  • Busch A, Hippler M (2011) The structure and function of eukaryotic photosystem I. Biochim Biophys Acta 1807:864–877

    Article  CAS  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai Z-L, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Article  CAS  Google Scholar 

  • Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f–a red-absorbing photopigment. FEBS Lett 586:3249–3254

    Article  CAS  Google Scholar 

  • Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  • Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1847:534–543

    Article  Google Scholar 

  • Herbstová M, Bína D, Kaňa R, Vácha F, Litvín R (2017) Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Sci Rep 7:11976

    Article  Google Scholar 

  • Ishihara T, Ifuku K, Yamashita E, Fukunaga Y, Nishino Y, Miyazawa A, Kashino Y, Inoue-Kashino N (2015) Utilization of light by fucoxanthin-chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis. Photosynth Res 126:437–447

    Article  CAS  Google Scholar 

  • Kato K, Nagao R, Jiang T-Y, Ueno Y, Yokono M, Chan SK, Watanabe M, Ikeuchi M, Shen J-R, Akimoto S, Miyazaki N, Akita F (2019) Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nat Commun 10:4929

    Article  Google Scholar 

  • Lavaud J, Lepetit B (2013) An expanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochim Biophys Acta 1827:294–302

    Article  CAS  Google Scholar 

  • Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee SGD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293

    Article  CAS  Google Scholar 

  • Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A, Iwai M, Takahashi T, Kashino Y, Enami I (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362

    Article  CAS  Google Scholar 

  • Nagao R, Ueno Y, Yokono M, Shen J-R, Akimoto S (2018) Alterations of pigment composition and their interactions in response to different light conditions in the diatom Chaetoceros gracilis probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1859:524–530

    Article  CAS  Google Scholar 

  • Nagao R, Ueno Y, Yokono M, Shen JR, Akimoto S (2019) Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. Photosynth Res 141:355–365

    Article  CAS  Google Scholar 

  • Neilson JAD, Durnford DG (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 106:57–71

    Article  CAS  Google Scholar 

  • Nymark M, Volpe C, Hafskjold MCG, Kirst H, Serif M, Vadstein O, Bones AM, Melis A, Winge P (2019) Loss of ALBINO3b insertase results in truncated light-harvesting antenna in diatoms. Plant Physiol 181:1257–1276

    Article  CAS  Google Scholar 

  • Pagliano C, Saracco G, Barber J (2013) Structural, functional and auxiliary proteins of photosystem II. Photosynth Res 116:167–188

    Article  CAS  Google Scholar 

  • Shubin VV, Bezsmertnaya IN, Karapetyan NV (1995) Efficient energy transfer from the long-wavelength antenna chlorophylls to P700 in photosystem I complexes from Spirulina platensis. J Photochem Photobiol B 30:153–160

    Article  CAS  Google Scholar 

  • Tomo T, Shinoda T, Chen M, Allakhverdiev SI, Akimoto S (2014) Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1837:1484–1489

    Article  CAS  Google Scholar 

  • Ueno Y, Shimakawa G, Miyake C, Akimoto S (2018) Light-harvesting strategy during CO2-dependent photosynthesis in the green alga Chlamydomonas reinhardtii. J Phys Chem Lett 9:1028–1033

    Article  CAS  Google Scholar 

  • Ueno Y, Nagao R, Shen J-R, Akimoto S (2019) Spectral properties and excitation relaxation of novel fucoxanthin chlorophyll a/c-binding protein complexes. J Phys Chem Lett 10:5148–5152

    Article  CAS  Google Scholar 

  • Yokono M, Akimoto S, Koyama K, Tsuchiya T, Mimuro M (2008) Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim Biophys Acta 1777:55–65

    Article  CAS  Google Scholar 

  • Yokono M, Nagao R, Tomo T, Akimoto S (2015) Regulation of excitation energy transfer in diatom PSII dimer: how does it change the destination of excitation energy? Biochim Biophys Acta 1847:1274–1282

    Article  CAS  Google Scholar 

  • Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, Murakami A, Akimoto S, Tanaka A (2019) The PSI-PSII megacomplex in green plants. Plant Cell Physiol 60:1098–1108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science KAKENHI JP18J10095 (to Y.U.), JP17H06433 (to J.-R.S.), JP17K07442 and JP19H04726 (to R.N.), and JP16H06553 (to S.A.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryo Nagao or Seiji Akimoto.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oka, K., Ueno, Y., Yokono, M. et al. Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. Photosynth Res 146, 227–234 (2020). https://doi.org/10.1007/s11120-020-00714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00714-1

Keywords

Navigation