Skip to main content

Advertisement

Log in

Sensitivity analysis and estimation using a hierarchical Bayesian method for the parameters of the FvCB biochemical photosynthetic model

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthesis is a major process included in land surface models. Accurately estimating the parameters of the photosynthetic sub-models can greatly improve the ability of these models to accurately simulate the carbon cycle of terrestrial ecosystems. Here, we used a hierarchical Bayesian approach to fit the Farquhar–von Caemmerer–Berry model, which is based on the biochemistry of photosynthesis using 236 curves for the relationship between net CO2 assimilation and changes in the intercellular CO2 concentration. An advantage of the hierarchical Bayesian algorithm is that parameters can be estimated at multiple levels (plant, species, plant functional type, and population level) simultaneously. The parameters of the hierarchical strategy were based on the results of a sensitivity analysis. The Michaelis–Menten constant (Kc25), enthalpies of activation (EJ and EV), and two optical parameters (θ and α) demonstrated considerable variation at different levels, which suggests that this variation cannot be ignored. The maximum electron transport rate (Jmax25), maximum rate of Rubisco activity (Vcmax25), and dark respiration in the light (Rd25) were higher for broad-leaved plants than for needle-leaved plants. Comparison of the model’s simulated outputs with observed data showed strong and significant positive correlations, particularly when the model was parameterized at the plant level. In summary, our study is the first effort to combine sensitivity analysis and hierarchical Bayesian parameter estimation. The resulting realistic parameter distributions for the four levels provide a reference for current and future land surface models. Furthermore, the observed variation in the parameters will require attention when using photosynthetic parameters in future models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amane M (2011) Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 155:125–129

    Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG, Creek D, Crous KY, Domingues TF, Dukes JS, Egerton JJG, Evans JR, Farquhar GD, Fyllas NM, Gauthier PPG, Gloor E, Gimeno TE, Griffin KL, Guerrieri R, Heskel MA, Huntingford C, Ishida FY, Kattge J, Lambers H, Liddell MJ, Lloyd J, Lusk CH, Martin RE, Maksimov AP, Maximov TC, Malhi Y, Medlyn BE, Patrick M, Mercado LM, Mirotchnick N, Ng D, Niinemets Ü, O’Sullivan OS, Phillips OL, Lourens P, Pieter P, Prentice IC, Salinas N, Rowland LM, Ryan MG, Stephen S, Martijn S, Nicholas GS, Turnbull MH, Mark C, Vander W, Fernando V, Veneklaas EJ, Weerasinghe LK, Wirth C, Wright IJ, Wythers KR, Xiang J, Xiang S, Zaragoza-Castells J (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636

    CAS  PubMed  Google Scholar 

  • Baly ECC (1935) The kinetics of photosynthesis. Proc R Soc Lond Ser B 117:218–239

    CAS  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis Jr AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    CAS  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1–7

    Google Scholar 

  • Blackman FF (1905) Optima and limiting factors. Ann Bot 19:281–295

    Google Scholar 

  • Bonan GB, Oleson KW, Vertenstein M, Levis S (2002) The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J Clim 15:3123–3149

    Google Scholar 

  • Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116:G02014. https://doi.org/10.1029/2010JG001593

    Article  Google Scholar 

  • Brito C, Bown H, Fuentes J, Franck N, Perez-Quezada J (2014) Mesophyll conductance constrains photosynthesis in three common sclerophyllous species in Central Chile. Revista Chilena de Historia Natural 87:1–12

    Google Scholar 

  • Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Model Softw 22:1509–1518

    Google Scholar 

  • Carlin BP, Clark JS, Gelfand AE (2006) Elements of hierarchical Bayesian inference. In: Clark JS, Gelfand AE (eds) Hierarchical modelling for the environmental sciences: statistical methods and applications. Oxford University Press, New York, pp 3–24

    Google Scholar 

  • Cibin R, Sudheer KP, Chaubey I (2010) Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol Process 24:1133–1148

    Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Google Scholar 

  • Clark JS (2007) Models for ecological data: an introduction. Princeton University Press, Princeton

    Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis, and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136

    Google Scholar 

  • De Kauwe MG, Lin YS, Wright IJ, Medlyn BE, Crous KY, Ellsworth DS, Maire V, Prentice IC, Atkin OK, Rogers A, Niinemets Ü, Serbin SP, Patrick M, Johan U, Togashi HF, Tarvainen L, Weerasinghe LK, Evans BJ, Ishida FY, Domingues TF (2016) A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol 210:1130–1144

    PubMed  Google Scholar 

  • Dubois JJB, Fiscus EL, Booker FL, Flowers MD, Reid CD (2007) Optimizing the statistical estimation of the parameters of the Farquhar–von Caemmerer-Berry model of photosynthesis. New Phytol 176:402–414

    PubMed  Google Scholar 

  • Ellsworth DS, Crous KY, Lambers H, Cooke J (2015) Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant Cell Environ 38:1142–1156

    CAS  PubMed  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis mode. Plant Cell Environ 27:137–153

    CAS  Google Scholar 

  • Evans JR (1987) The dependence of quantum yield on wavelength and growth irradiance. Aust J Plant Physiol 14:69–79

    Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  PubMed  Google Scholar 

  • Feng XH, Dietze M (2013) Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: bayesian parameterization of photosynthesis models. New Phytol 4:1132–1144

    Google Scholar 

  • Fischer RA, Byerlee D, Edmeades GO (2014) Crop yields and global food security: will yield increase continue to feed the world?. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Fisher JB, Huntzinger DN, Schwalm CR, Sitch S (2014) Modeling the terrestrial biosphere. Annu Rev Environ Resour 39:91–123

    Google Scholar 

  • Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM, Spessa A, Lawrence D, Bonan G (2015) Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5 (ED). Geosci Model Dev 8:3593–3619

    Google Scholar 

  • Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–612

    CAS  PubMed  Google Scholar 

  • Fox A, Williams M, Richardson AD, Camerond D, Govee GH, Quaifef T, Daniel R, Reichstein M, Tomelleri E, Trudinger CM, Van Wijk MT (2009) The REFLEX project: comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agric For Meteorol 149:1597–1615

    Google Scholar 

  • Franks PJ, Bonan GB, Berry JA, Lombardozzi DL, Holbrook NM, Herold N, Oleson KW (2018) Comparing optimal and empirical stomatal conductance models for application in Earth system models. Glob Change Biol 24:5708–5723

    Google Scholar 

  • Fu G, Butler D, Khu ST, Sun SA (2011) Imprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theory. Water Resour Res 47:1–13

    Google Scholar 

  • Galmés J, Kapralov MV, Andralojc PJ, Conesa MA, Keys AJ, Parry MAJ, Flexas J (2014) Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant Cell Environ 37:1989–2001

    PubMed  Google Scholar 

  • Gálvez ED, Capuz-Rizo SF (2016) Assessment of global sensitivity analysis methods for project scheduling. Comput Ind Eng 93:110–120

    Google Scholar 

  • Gelman A (2004) Parameterization and Bayesian modeling. J Am Stat Assoc 99:537–545

    Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533

    Google Scholar 

  • Hall JW, Tarantola S, Bates PD, Horritt MS (2005) Distributed sensitivity analysis of flood inundation model calibration. J Hydraul Eng 131:117–126

    Google Scholar 

  • Han F, Zheng Y (2016) Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors. Adv Water Resour 88:109–123

    CAS  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435

    CAS  PubMed  Google Scholar 

  • Harley PC, Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth Res 27:169–178

    CAS  PubMed  Google Scholar 

  • Harley PC, Tenhunen JD, Lange OL (1986) Use of an analytical model to study limitation on net photosynthesis in Arbutus unedo under field conditions. Oecologia 70:393–401

    CAS  PubMed  Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modeling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    CAS  Google Scholar 

  • Helton J, Davis F (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81:23–69

    Google Scholar 

  • Hermida-Carrera C, Kapralov MV, Galmés J (2016) Rubisco catalytic properties and temperature response in crops. Plant Physiol 171:2549–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    CAS  PubMed  Google Scholar 

  • Jordan DB, Ögren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161:308–313

    CAS  PubMed  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176–1190

    CAS  PubMed  Google Scholar 

  • Kosugi Y, Shibata S, Kobashi S (2003) Parameterization of the CO2 and H2O gas exchange of several temperate deciduous broad-leaved trees at the leaf scale considering seasonal changes. Plant Cell Environ 26:285–301

    Google Scholar 

  • Kucherenko S, Rodriguez-Fernandez M, Pantelides C, Shah N (2009) Monte Carlo evaluation of derivative-based global sensitivity measures. Reliab Eng Syst Saf 94:1135–1148

    Google Scholar 

  • Laughlin DC, Leppert JJ, Moore MM, Sieg CH (2010) A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct Ecol 24:493–501

    Google Scholar 

  • Leuning R (1997) Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax. J Exp Bot 48:345–347

    CAS  Google Scholar 

  • Lin YS, Duursma RA, Prentice IC, Wang H, Baig S, Eamus D, de Dios VR, Wingate L (2015) Optimal stomatal behaviour around the world. Nat Clim Change 5:459–464

    CAS  Google Scholar 

  • Lloyd J, Syvertsen JP, Kriedemann PE, Farquhar GD (1992) Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant Cell Environ 15:873–899

    CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 392:2393–2401

    Google Scholar 

  • Luo YQ, White LW, Canadell JG, DeLucia EH, Ellsworth DS, Finzi A, Lichter J, Schlesinger WH (2003) Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Glob Biogeochem Cycles 17:1–13

    CAS  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42:55–61

    Google Scholar 

  • Medlyn BE, Dreyer E (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    CAS  Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, de Angelis P, Freeman M, Wingate L (2011) Reconciling the optimal and empirical approaches to modeling stomatal conductance. Glob Change Biol 17:2134–2144

    Google Scholar 

  • Miao ZW, Xu M, Lathrop JR, Wang YF (2009) Comparison of the A-Cc curve fitting methods in determining maximum ribulose 1.5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration. Plant Cell Environ 32:109–122

    CAS  PubMed  Google Scholar 

  • Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochemische Zeitschrift 49:333–369

    CAS  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174

    Google Scholar 

  • Norros V, Laine M, Lignell R, Thingstad F (2017) Parameterization of aquatic ecosystem functioning and its natural variation: hierarchical Bayesian modelling of plankton food web dynamics. J Mar Syst 174:40–53

    Google Scholar 

  • Nossent J, Elsen P, Bauwens W (2011) Sobol’ sensitivity analysis of a complex environmental model. Environ Model Softw 26:1515–1525

    Google Scholar 

  • Ögren E, Evans JR (1993) Photosynthetic light-response curves. I. The influence of CO2 partial pressure and leaf inversion. Planta 189:182–190

    Google Scholar 

  • Oleson K, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, Swenson S, Thornton PE, Bozbiyik A, Fisher R, Heald CL, Kluzek E, Lamarque JF, Lawrence PJ, Leung LR, Lipscomb W, Muszala SP, Ricciuto DM, Sacks WJ, Sun Y, Tang J, Yang ZL (2013) Technical description of version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503 + STR. https://doi.org/10.5065/d6rr1w7m

  • Orr DJ, Alcântara A, Kapralov MV, Andralojc PJ, Carmo-Silva E, Parry MAJ (2016) Surveying Rubisco diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol. https://doi.org/10.1104/00.16.00750

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick LD, Ogle K, Tissue DT (2009) A hierarchical Bayesian approach for estimation of photosynthetic parameters of C3 plants. Plant Cell Environ 32:1695–1709

    CAS  PubMed  Google Scholar 

  • Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 23:479–510

    Google Scholar 

  • Qian T, Elings A, Dieleman JA, Gort G, Marcelis LFM (2012) Estimation of photosynthesis parameters for a modified Farquhar–von Caemmerer-Berry model using simultaneous estimation method and nonlinear mixed effects model. Environ Exp Bot 82:66–73

    CAS  Google Scholar 

  • Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, Leakey ADB, Mercado LM, Niinemets Ü, Prentice IC, Serbin SP, Sitch S, Way DA, Zaehle S (2017) A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol 213:22–42

    PubMed  Google Scholar 

  • Running SW, Hunt RE (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer JR, Fields CB (eds) Scaling physiologic processes, leaf to globe. Academic Press, San Diego, pp 141–158

    Google Scholar 

  • Sellers PJ, Los SO, Tucker CJ, Justice CO, Dazlich DA, Collatz GJ, Randall DA (1995a) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: the generation of global fields of terrestrial biophysical parameters from satellite data. J Clim 9:706–736

    Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1995b) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:676–704

    Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509

    CAS  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    CAS  PubMed  Google Scholar 

  • Sieber A, Uhlenbrook S (2005) Sensitivity analyses of a distributed catchment model to verify the model structure. J Hydrol 310:216–235

    Google Scholar 

  • Sobol’ IM (1990) On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 2:112–118

    Google Scholar 

  • Sobol’ IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 1:407–417

    Google Scholar 

  • Sobol’ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64:583–640

    Google Scholar 

  • Su YH, Zhu GF, Miao ZW, Qi F, Chang ZQ (2009) Estimation of parameters of a biochemically based model of photosynthesis using a genetic algorithm. Plant Cell Environ 32:1710–1723

    CAS  PubMed  Google Scholar 

  • Su YH, Feng Q, Zhu GF, Gu CJ, Wang YQ, Shang SS, Zhang K, Han T, Chen HL, Ma JZ (2018) A hierarchical Bayesian approach for multi-site optimization of a satellite-based evapotranspiration model. Hydrol Process. https://doi.org/10.1002/hyp.13298

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Reed P, van Werkhoven K, Wagener T (2007a) Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water Resour Res 43:1–14

    CAS  Google Scholar 

  • Tang Y, Reed P, Wagener T, van Werkhoven K (2007b) Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrol Earth Syst Sci 11:793–817

    Google Scholar 

  • Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thornley JHM (1976) Mathematical models in plant physiology. Academic Press, London

    Google Scholar 

  • Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Ribas-Carbó Mique, Tosens T, Vislap V, Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64:2269–2281

    PubMed  PubMed Central  Google Scholar 

  • Trudinger CM, Raupach MR, Peter JR, Kattge J, Liu Q, Pak B, Reichstein M, Renzullo L, Richardson AD, Roxburgh SH, Styles J, Wang YP, Briggs P, Barrett D, Nikolova S (2007) OptIC project: an intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models. J Geophys Res 112:1–17

    Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. Techniques in plant science, vol 2. CSIRO Publishing, Collingwood

    Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97

    Google Scholar 

  • Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119

    CAS  PubMed  Google Scholar 

  • Walker AP, Ye M, Lu D, De Kauwe MG, Gu LH, Medlyn BE, Rogers A, Serbin SP (2018) The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources. Geosci Model Dev 11:3159–3185

    Google Scholar 

  • Wang J, Li X, Liu L, Fang F (2013) Parameter sensitivity analysis of crop growth models based on the extended Fourier amplitude sensitivity test method. Environ Model Softw 48:171–182

    Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100

    CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    PubMed  Google Scholar 

  • Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920

    CAS  Google Scholar 

  • Wullschleger SD, Epstein HE, Box EO, Euskirchen ES, Goswami S, Iversen CM, Kattge J, Norby RJ, van Bodegom PM, Xu X (2014) Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann Bot 114:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu FY, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li JX, He WM, Zhang GJ, Zheng XM, Zhang FM, Li YR, Yu C, Kristiansen K, Zhang XQ, Wang Ji, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    CAS  Google Scholar 

  • Yamori W, Noguchi K, Terashima I (2005) Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ 28:536–547

    CAS  Google Scholar 

  • Zaehle S, Sitch S, Smith B, Hatterman F (2005) Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Glob Biogeochem Cycle 19:3020

    Google Scholar 

  • Zhang C, Chu JG, Fu GT (2013) Sobol’s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China. J Hydrol 480:58–68

    Google Scholar 

  • Zhang K, Ma JZ, Zhu GF, Ma T, Han T, Feng LL (2017) Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data. J Geophys Res 122:230–245

    Google Scholar 

  • Zhu GF, Li X, Su YH, Lu L, Huang CL (2011) Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv. Tree Physiol 31:178–195

    PubMed  Google Scholar 

Download references

Acknowledgements

The research was funded by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA19040500), the National Natural Science Foundation of China (Nos. 41871078 and 41571016), National Key R & D Program of China (Grant No. 2016YFC0501002), and the Fundamental Research Funds for the Central Universities (Nos. 862851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Our research complies with the ethical standards of our university and laboratory ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 11 kb)

Supplementary material 2 (DOCX 3328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Zhu, G., Ma, J. et al. Sensitivity analysis and estimation using a hierarchical Bayesian method for the parameters of the FvCB biochemical photosynthetic model. Photosynth Res 143, 45–66 (2020). https://doi.org/10.1007/s11120-019-00684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00684-z

Keywords

Navigation