Skip to main content
Log in

In vivo assembly of a truncated H subunit mutant of the Rhodobacter sphaeroides photosynthetic reaction centre and direct electron transfer from the QA quinone to an electrode

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We address a challenge in the engineering of proteins to redirect electron transfer pathways, using the bacterial photosynthetic reaction centre (RC) pigment–protein complex. Direct electron transfer is shown to occur from the QA quinone of the Rhodobacter sphaeroides RC containing a truncated H protein and bound on the quinone side to a gold electrode. In previous reports of binding to the quinone side of the RC, electron transfer has relied on the use of a soluble mediator between the RC and an electrode, in part because the probability of QB quinone reduction is much greater than that of direct electron transfer through the large cytoplasmic domain of the H subunit, presenting a ~ 25 Å barrier. A series of C-terminal truncations of the H subunit were created to expose the quinone region of the RC L and M proteins, and all truncated RC H mutants assembled in vivo. The 45M mutant was designed to contain only the N-terminal 45 amino acid residues of the H subunit including the membrane-spanning α-helix; the mutant RC was stable when purified using the detergent N-dodecyl-β-d-maltoside, contained a near-native ratio of bacteriochlorophylls to bacteriopheophytins, and showed a charge-separated state of \({{\text{P}}^{\text{+}}}{{\text{Q}}_{\text{A}}^-}\). The 45M-M229 mutant RC had a Cys residue introduced in the vicinity of the QA quinone on the newly exposed protein surface for electrode attachment, decreasing the distance between the quinone and electrode to ~ 12 Å. Steady-state photocurrents of up to around 200 nA/cm2 were generated in the presence of 20 mM hydroquinone as the electron donor to the RC. This novel configuration yielded photocurrents orders of magnitude greater than previous reports of electron transfer from the quinone region of RCs bound in this orientation to an electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Axelrod HL, Abresch EC, Okamura MY, Yeh AP, Rees DC, Feher G (2002) X-ray structure determination of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. J Mol Biol 319:501–515

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2002). Molecular mechanisms of photosynthesis, 1st edn. Blackwell Science Ltd, Hoboken

    Book  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ, Feher G, Okamura MY (1985). LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26: characterization and reconstitution with the H subunit. Biochemistry 24:2488–2500

    Article  CAS  Google Scholar 

  • den Hollander MJ, Magis JG, Fuchsenberger P, Aartsma TJ, Jones MR, Frese RN (2011) Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein-gold interactions. Langmuir 27:10282–10294

    Article  CAS  Google Scholar 

  • Dierstein R (1983). Biosynthesis of pigment-protein complex polypeptides in bacteriochlorophyll-less mutant cells of Rhodopseudomonas capsulata YS. FEBS Lett 160:281–286

    Article  CAS  Google Scholar 

  • Donohue TJ, Kaplan S (1991) Genetic techniques in Rhodospirillaceae. Methods Enzymol 204:459–485

    Article  PubMed  CAS  Google Scholar 

  • Dutta PK, Lin S, Loskutov A, Levenberg S, Jun D, Saer R, Beatty JT, Liu Y, Yan H, Woodbury NW (2014) Reengineering the optical absorption cross-section of photosynthetic reaction centers. J Am Chem Soc 136:4599–4604

    Article  PubMed  CAS  Google Scholar 

  • Friebe VM, Swainsbury DJK, Fyfe PK, van der Heijden W, Jones MR, Frese RN (2016). On the mechanism of ubiquinone mediated photocurrent generation by a reaction center based photocathode. BBA Bioenergetics 1957:1925–1934

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  • Hughes AV, Rees P, Heathcote P, Jones MR (2006) Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides. Biophys J 90:4155–4166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ind AC, Porter SL, Brown MT, Byles ED, de Beyer JA, Godfrey SA, Armitage JP (2009) Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol 75:6613–6615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaschke PR, Saer RG, Noll S, Beatty JT (2011) Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 497:519–538

    Article  PubMed  CAS  Google Scholar 

  • Jones MR (2009) The petite purple photosynthetic powerpack. Biochem Soc Trans 37:400–407

    Article  PubMed  CAS  Google Scholar 

  • Jun D, Saer RG, Madden JD, Beatty JT (2014) Use of new strains of Rhodobacter sphaeroides and a modified simple culture medium to increase yield and facilitate purification of the reaction centre. Photosynth Res 120:197–205

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Iida K, Dewa T, Tanaka H, Ogawa T, Nagashima S, Nagashima KVP, Shimada K, Hashimoto H, Gardiner AT et al. (2012). Photocurrent and electronic activities of oriented-his-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules 13:432–438

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC (1994). Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91:10265–10269

    Google Scholar 

  • Lin S, Jaschke PR, Wang H, Paddock M, Tufts A, Allen JP, Rosell FI, Mauk AG, Woodbury NW, Beatty JT (2009). Electron transfer in the Rhodobacter sphaeroides reaction center assembled with zinc bacteriochlorophyll. Proc Natl Acad Sci USA 106:8537–8542

    Google Scholar 

  • Mahmoudzadeh A, Saer R, Jun D, Mirvakili SM, Takshi A, Iranpour B, Ouellet E, Lagally ET, Madden JDW, Beatty JT (2011). Photocurrent generation by direct electron transfer using photosynthetic reaction centres. Smart Mater Struct 20:094019

    Article  CAS  Google Scholar 

  • Mirvakili SM, Slota JE, Usgaocar AR, Mahmoudzadeh A, Jun D, Mirvakili MN, Beatty JT, Madden JDW (2014) Photoactive electrodes incorporating electrosprayed bacterial reaction centers. Adv Funct Mater 24:4789–4794

    Article  CAS  Google Scholar 

  • Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AKW, Woodbury NW, Williams JC (1993). Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: Phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry 32:3498–3505

    Article  PubMed  CAS  Google Scholar 

  • Okamura MY, Isaacson RA, Feher G (1975). Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc Natl Acad Sci USA 72:3491–3495

    Article  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999). Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    Article  PubMed  CAS  Google Scholar 

  • Saer RG, Hardjasa A, Rosell FI, Mauk AG, Murphy ME, Beatty JT (2013) Role of Rhodobacter sphaeroides photosynthetic reaction center residue M214 in the composition, absorbance properties, and conformations of H(A) and B(A) cofactors. Biochemistry 52:2206–2217

    Article  PubMed  CAS  Google Scholar 

  • Savikhin S, Jankowiak R (2014) Mechanism of primary charge separation in photosynthetic reaction centers. In: Golbeck J, van der Est A (eds) The biophysics of photosynthesis. Springer, New York, p 193–240

    Google Scholar 

  • Sockett RE, Donohue TJ, Varga AR, Kaplan S (1989) Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences. J Bacteriol 171:436–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun C, Taguchi AT, Beal NJ, O’Malley PJ, Dikanov SA, Wraight CA (2015) Regulation of the primary quinone binding conformation by the H subunit in reaction centers from Rhodobacter sphaeroides. J Phys Chem Lett 6:4541–4546

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Carey A-M, Gao B-R, Wraight CA, Woodbury NW, Lin S (2016) Ultrafast electron transfer kinetics in the LM dimer of bacterial photosynthetic reaction center from Rhodobacter sphaeroides. J Phys Chem B 120:5395–5404

    Article  PubMed  CAS  Google Scholar 

  • Takemoto J, Lascelles J (1973). Coupling between bacteriochlorophyll and membrane protein synthesis in Rhodopseudomonas spheroides. Proc Natl Acad Sci USA 70:799–803

    Article  Google Scholar 

  • Takshi A, Madden JD, Beatty JT (2009) Diffusion model for charge transfer from a photosynthetic reaction center to an electrode in a photovoltaic device. Electrochim Acta 54:3806–3811

    Article  CAS  Google Scholar 

  • Takshi A, Yaghoubi H, Wang J, Jun D, Beatty JT (2017). Electrochemical field-effect transistor utilization to study the coupling success rate of photosynthetic protein complexes to cytochrome c. Biosensors (Basel) 7:16

    Article  Google Scholar 

  • Tan SC, Crouch LI, Jones MR, Welland M (2012) Generation of alternating current in response to discontinuous illumination by photoelectrochemical cells based on photosynthetic proteins. Angew Chem Int Ed 51:6667–6671

    Article  CAS  Google Scholar 

  • Tehrani A, Thomas Beatty J (2004) Effects of precise deletions in Rhodobacter sphaeroides reaction center genes on steady-state levels of reaction center proteins: a revised model for reaction center assembly. Photosynth Res 79:101–108

    Article  PubMed  CAS  Google Scholar 

  • Tehrani A, Prince RC, Beatty JT (2003). Effects of photosynthetic reaction center H protein domain mutations on photosynthetic properties and reaction center assembly in Rhodobacter sphaeroides. Biochemistry 42:8919–8928

    Article  PubMed  CAS  Google Scholar 

  • Trammell SA, Spano A, Price R, Lebedev N (2006) Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes. Biosens Bioelectron 21:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • van der Rest M, Gingras G (1974) The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum. J Biol Chem 249:6446–6453

    PubMed  Google Scholar 

  • Varga AR, Kaplan S (1993) Synthesis and stability of reaction center polypeptides and implications for reaction center assembly in Rhodobacter sphaeroides. J Biol Chem 268:19842–19850

    PubMed  CAS  Google Scholar 

  • Warshel A, Creighton S, Parson WW (1988) Electron-transfer pathways in the primary event of bacterial photosynthesis. J Phys Chem 92:2696–2701

    Article  CAS  Google Scholar 

  • Winkler JR, Gray HB (2014) Long-range electron tunneling. J Am Chem Soc 136:2930–2939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaghoubi H, Li Z, Jun D, Saer R, Slota JE, Beerbom M, Schlaf R, Madden JD, Beatty JT, Takshi A (2012) The role of gold-adsorbed photosynthetic reaction centers and redox mediators in the charge transfer and photocurrent generation in a bio-photoelectrochemical cell. J Phys Chem C 116:24868–24877

    Article  CAS  Google Scholar 

  • Yaghoubi H, Schaefer M, Yaghoubi S, Jun D, Schlaf R, Beatty JT, Takshi A (2017). A ZnO nanowire bio-hybrid solar cell. Nanotechnology 28:054006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Dobashi and J. Johnson for expert advice and technical support. This research was supported by Discovery grants from the Canadian Natural Sciences and Engineering Research Council (NSERC) to J.T.B. (RGPIN 2796-13) and to J.M., and Genome British Columbia (SOF 153) to J.T.B. and J.M. D.J. was the recipient of an NSERC fellowship (PGS-D 6564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Beatty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 KB)

Supplementary material 2 (PDF 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, D., Dhupar, H.S., Mahmoudzadeh, A. et al. In vivo assembly of a truncated H subunit mutant of the Rhodobacter sphaeroides photosynthetic reaction centre and direct electron transfer from the QA quinone to an electrode. Photosynth Res 137, 227–239 (2018). https://doi.org/10.1007/s11120-018-0493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0493-0

Keywords

Navigation